Stability for non-autonomous linear evolution equations with L p -maximal regularity

Hafida Laasri; Omar El-Mennaoui

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 4, page 887-908
  • ISSN: 0011-4642

Abstract

top
We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem ( P ) u ˙ ( t ) + A ( t ) u ( t ) = f ( t ) t -a.e. on [ 0 , τ ] , u ( 0 ) = 0 , where A : [ 0 , τ ] ( X , D ) is a bounded and strongly measurable function and X , D are Banach spaces such that D d X . Our main concern is to characterize L p -maximal regularity and to give an explicit approximation of the problem (P).

How to cite

top

Laasri, Hafida, and El-Mennaoui, Omar. "Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity." Czechoslovak Mathematical Journal 63.4 (2013): 887-908. <http://eudml.org/doc/260760>.

@article{Laasri2013,
abstract = {We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem \[ (\{\rm P\}) \{\left\lbrace \begin\{array\}\{ll\} \dot\{u\}(t)+A(t)u(t)=f(t)\quad t\text\{-a.e. on\} [0,\tau ], u(0)=0, \end\{array\}\right.\} \] where $A\colon [0,\tau ]\rightarrow \mathcal \{L\}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset\{d\}\{\rightarrow \}\{\hookrightarrow \}X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).},
author = {Laasri, Hafida, El-Mennaoui, Omar},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation; maximal regularity; non-autonomous evolution equation; stability; integrability},
language = {eng},
number = {4},
pages = {887-908},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity},
url = {http://eudml.org/doc/260760},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Laasri, Hafida
AU - El-Mennaoui, Omar
TI - Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 887
EP - 908
AB - We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem \[ ({\rm P}) {\left\lbrace \begin{array}{ll} \dot{u}(t)+A(t)u(t)=f(t)\quad t\text{-a.e. on} [0,\tau ], u(0)=0, \end{array}\right.} \] where $A\colon [0,\tau ]\rightarrow \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset{d}{\rightarrow }{\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
LA - eng
KW - maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation; maximal regularity; non-autonomous evolution equation; stability; integrability
UR - http://eudml.org/doc/260760
ER -

References

top
  1. Amann, H., 10.1515/ans-2004-0404, Adv. Nonlinear Stud. 4 (2004), 417-430. (2004) Zbl1072.35103MR2100906DOI10.1515/ans-2004-0404
  2. Arendt, W., Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85. (2004) Zbl1082.35001MR2103696
  3. Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96, Birkhäuser Basel (2001). (2001) MR1886588
  4. Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311-343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
  5. Arendt, W., Bu, S., 10.1017/S0305004102006345, Math. Proc. Camb. Philos. Soc. 134 (2003), 317-336. (2003) Zbl1041.47018MR1972141DOI10.1017/S0305004102006345
  6. Arendt, W., Bu, S., Fourier series in Banach spaces and maximal regularity, Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39. (2010) Zbl1254.42015MR2743491
  7. Arendt, W., Chill, R., Fornaro, S., Poupaud, C., 10.1016/j.jde.2007.02.010, J. Differ. Equations 237 (2007), 1-26. (2007) Zbl1126.34037MR2327725DOI10.1016/j.jde.2007.02.010
  8. Cannarsa, P., Vespri, V., On maximal L p regularity for the abstract Cauchy problem, Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175. (1986) MR0841623
  9. Prato, G. Da, Grisvard, P., Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French. (1975) Zbl0315.47009MR0442749
  10. Simon, L. De, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. (1964) Zbl0196.44803MR0176192
  11. Denk, R., Hieber, M., Prüss, J., -boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Mem. Am. Math. Soc. Providence RI 166 (2003). (2003) MR2006641
  12. Dore, G., L p -regularity for abstract differential equations, Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38. (1993) MR1225809
  13. El-Mennaoui, O., Keyantuo, V., Laasri, H., Infinitesimal product of semigroups, Ulmer Seminare 16 (2011), 219-230. (2011) 
  14. Hieber, M., Monniaux, S., 10.1007/BF02511541, J. Fourier Anal. Appl. 6 (2000), 468-481. (2000) Zbl0979.35028DOI10.1007/BF02511541
  15. Hieber, M., Monniaux, S., 10.1090/S0002-9939-99-05145-X, Proc. Am. Math. Soc. 128 (2000), 1047-1053. (2000) Zbl0937.35195MR1641630DOI10.1090/S0002-9939-99-05145-X
  16. Kalton, N. J., Lancien, G., 10.1007/PL00004816, Math. Z. 235 (2000), 559-568. (2000) Zbl1010.47024MR1800212DOI10.1007/PL00004816
  17. Kunstmann, P. C., Weis, L., 10.1007/978-3-540-44653-8_2, Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311. (2004) Zbl1097.47041MR2108959DOI10.1007/978-3-540-44653-8_2
  18. Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Basel (1995). (1995) MR1329547
  19. Portal, P., Štrkalj, Ž., 10.1007/s00209-006-0934-x, Math. Z. 253 (2006), 805-819. (2006) Zbl1101.47030MR2221100DOI10.1007/s00209-006-0934-x
  20. Prüss, J., Schnaubelt, R., 10.1006/jmaa.2000.7247, J. Math. Anal. Appl. 256 (2001), 405-430. (2001) Zbl0994.35076MR1821747DOI10.1006/jmaa.2000.7247
  21. Slavík, A., Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1, Matfyzpress Praha (2007). (2007) MR2917851
  22. Sobolevskij, P. E., Coerciveness inequalities for abstract parabolic equations, Sov. Math., Dokl. 5 (1964), 894-897 <title>Dokl. Akad. Nauk SSSR 157 (1964), 52-55 Russian. (1964) Zbl0149.36001MR0166487
  23. Triebel, H., Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser Basel (1983). (1983) MR0781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.