Stability for non-autonomous linear evolution equations with -maximal regularity
Hafida Laasri; Omar El-Mennaoui
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 887-908
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLaasri, Hafida, and El-Mennaoui, Omar. "Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity." Czechoslovak Mathematical Journal 63.4 (2013): 887-908. <http://eudml.org/doc/260760>.
@article{Laasri2013,
abstract = {We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem \[ (\{\rm P\}) \{\left\lbrace \begin\{array\}\{ll\} \dot\{u\}(t)+A(t)u(t)=f(t)\quad t\text\{-a.e. on\} [0,\tau ], u(0)=0, \end\{array\}\right.\} \]
where $A\colon [0,\tau ]\rightarrow \mathcal \{L\}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset\{d\}\{\rightarrow \}\{\hookrightarrow \}X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).},
author = {Laasri, Hafida, El-Mennaoui, Omar},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation; maximal regularity; non-autonomous evolution equation; stability; integrability},
language = {eng},
number = {4},
pages = {887-908},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity},
url = {http://eudml.org/doc/260760},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Laasri, Hafida
AU - El-Mennaoui, Omar
TI - Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 887
EP - 908
AB - We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem \[ ({\rm P}) {\left\lbrace \begin{array}{ll} \dot{u}(t)+A(t)u(t)=f(t)\quad t\text{-a.e. on} [0,\tau ], u(0)=0, \end{array}\right.} \]
where $A\colon [0,\tau ]\rightarrow \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset{d}{\rightarrow }{\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
LA - eng
KW - maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation; maximal regularity; non-autonomous evolution equation; stability; integrability
UR - http://eudml.org/doc/260760
ER -
References
top- Amann, H., 10.1515/ans-2004-0404, Adv. Nonlinear Stud. 4 (2004), 417-430. (2004) Zbl1072.35103MR2100906DOI10.1515/ans-2004-0404
- Arendt, W., Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85. (2004) Zbl1082.35001MR2103696
- Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96, Birkhäuser Basel (2001). (2001) MR1886588
- Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311-343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
- Arendt, W., Bu, S., 10.1017/S0305004102006345, Math. Proc. Camb. Philos. Soc. 134 (2003), 317-336. (2003) Zbl1041.47018MR1972141DOI10.1017/S0305004102006345
- Arendt, W., Bu, S., Fourier series in Banach spaces and maximal regularity, Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39. (2010) Zbl1254.42015MR2743491
- Arendt, W., Chill, R., Fornaro, S., Poupaud, C., 10.1016/j.jde.2007.02.010, J. Differ. Equations 237 (2007), 1-26. (2007) Zbl1126.34037MR2327725DOI10.1016/j.jde.2007.02.010
- Cannarsa, P., Vespri, V., On maximal regularity for the abstract Cauchy problem, Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175. (1986) MR0841623
- Prato, G. Da, Grisvard, P., Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French. (1975) Zbl0315.47009MR0442749
- Simon, L. De, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. (1964) Zbl0196.44803MR0176192
- Denk, R., Hieber, M., Prüss, J., -boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Mem. Am. Math. Soc. Providence RI 166 (2003). (2003) MR2006641
- Dore, G., -regularity for abstract differential equations, Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38. (1993) MR1225809
- El-Mennaoui, O., Keyantuo, V., Laasri, H., Infinitesimal product of semigroups, Ulmer Seminare 16 (2011), 219-230. (2011)
- Hieber, M., Monniaux, S., 10.1007/BF02511541, J. Fourier Anal. Appl. 6 (2000), 468-481. (2000) Zbl0979.35028DOI10.1007/BF02511541
- Hieber, M., Monniaux, S., 10.1090/S0002-9939-99-05145-X, Proc. Am. Math. Soc. 128 (2000), 1047-1053. (2000) Zbl0937.35195MR1641630DOI10.1090/S0002-9939-99-05145-X
- Kalton, N. J., Lancien, G., 10.1007/PL00004816, Math. Z. 235 (2000), 559-568. (2000) Zbl1010.47024MR1800212DOI10.1007/PL00004816
- Kunstmann, P. C., Weis, L., 10.1007/978-3-540-44653-8_2, Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311. (2004) Zbl1097.47041MR2108959DOI10.1007/978-3-540-44653-8_2
- Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Basel (1995). (1995) MR1329547
- Portal, P., Štrkalj, Ž., 10.1007/s00209-006-0934-x, Math. Z. 253 (2006), 805-819. (2006) Zbl1101.47030MR2221100DOI10.1007/s00209-006-0934-x
- Prüss, J., Schnaubelt, R., 10.1006/jmaa.2000.7247, J. Math. Anal. Appl. 256 (2001), 405-430. (2001) Zbl0994.35076MR1821747DOI10.1006/jmaa.2000.7247
- Slavík, A., Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1, Matfyzpress Praha (2007). (2007) MR2917851
- Sobolevskij, P. E., Coerciveness inequalities for abstract parabolic equations, Sov. Math., Dokl. 5 (1964), 894-897 <title>Dokl. Akad. Nauk SSSR 157 (1964), 52-55 Russian. (1964) Zbl0149.36001MR0166487
- Triebel, H., Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser Basel (1983). (1983) MR0781540
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.