On the distribution of consecutive square-free primitive roots modulo
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 555-564
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Huaning, and Dong, Hui. "On the distribution of consecutive square-free primitive roots modulo $p$." Czechoslovak Mathematical Journal 65.2 (2015): 555-564. <http://eudml.org/doc/270106>.
@article{Liu2015,
abstract = {A positive integer $n$ is called a square-free number if it is not divisible by a perfect square except $1$. Let $p$ be an odd prime. For $n$ with $(n,p)=1$, the smallest positive integer $f$ such that $n^f \equiv 1 \hspace\{4.44443pt\}(\@mod \; p)$ is called the exponent of $n$ modulo $p$. If the exponent of $n$ modulo $p$ is $p-1$, then $n$ is called a primitive root mod $p$. Let $A(n)$ be the characteristic function of the square-free primitive roots modulo $p$. In this paper we study the distribution \[ \sum \_\{n\le x\}A(n)A(n+1), \]
and give an asymptotic formula by using properties of character sums.},
author = {Liu, Huaning, Dong, Hui},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free; primitive root; square sieve; character sum},
language = {eng},
number = {2},
pages = {555-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the distribution of consecutive square-free primitive roots modulo $p$},
url = {http://eudml.org/doc/270106},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Liu, Huaning
AU - Dong, Hui
TI - On the distribution of consecutive square-free primitive roots modulo $p$
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 555
EP - 564
AB - A positive integer $n$ is called a square-free number if it is not divisible by a perfect square except $1$. Let $p$ be an odd prime. For $n$ with $(n,p)=1$, the smallest positive integer $f$ such that $n^f \equiv 1 \hspace{4.44443pt}(\@mod \; p)$ is called the exponent of $n$ modulo $p$. If the exponent of $n$ modulo $p$ is $p-1$, then $n$ is called a primitive root mod $p$. Let $A(n)$ be the characteristic function of the square-free primitive roots modulo $p$. In this paper we study the distribution \[ \sum _{n\le x}A(n)A(n+1), \]
and give an asymptotic formula by using properties of character sums.
LA - eng
KW - square-free; primitive root; square sieve; character sum
UR - http://eudml.org/doc/270106
ER -
References
top- Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
- Liu, H., Zhang, W., 10.1215/kjm/1250281988, J. Math. Kyoto Univ. 45 (2005), 247-255. (2005) Zbl1089.11052MR2161690DOI10.1215/kjm/1250281988
- Mirsky, L., 10.1090/S0002-9904-1949-09313-8, Bull. Amer. Math. Soc. 55 (1949), 936-939. (1949) Zbl0035.31301MR0031507DOI10.1090/S0002-9904-1949-09313-8
- Munsch, M., 10.1007/s00013-014-0658-9, Arch. Math. (Basel) 102 (2014), 555-563. (2014) Zbl1297.11097MR3227477DOI10.1007/s00013-014-0658-9
- Pappalardi, F., A survey on -freeness, Number Theory S. D. Adhikari et al. Conf. Proc. Chennai, India, 2002 Ramanujan Mathematical Society, Ramanujan Math. Soc. Lect. Notes Ser. 1, Mysore (2005), 71-88. (2005) Zbl1156.11338MR2131677
- Rivat, J., Sárközy, A., 10.1007/s10998-005-0031-7, Period. Math. Hung. 51 (2005), 75-107. (2005) Zbl1111.11041MR2194941DOI10.1007/s10998-005-0031-7
- Shapiro, H. N., Introduction to the Theory of Numbers, Pure and Applied Mathematics. Wiley-Interscience Publication John Wiley & Sons. 12, New York (1983). (1983) Zbl0515.10001MR0693458
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.