On the quadratic fractional optimization with a strictly convex quadratic constraint
Kybernetika (2015)
- Volume: 51, Issue: 2, page 293-308
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSalahi, Maziar, and Fallahi, Saeed. "On the quadratic fractional optimization with a strictly convex quadratic constraint." Kybernetika 51.2 (2015): 293-308. <http://eudml.org/doc/270116>.
@article{Salahi2015,
abstract = {In this paper, we have studied the problem of minimizing the ratio of two indefinite quadratic functions subject to a strictly convex quadratic constraint. First utilizing the relationship between fractional and parametric programming problems due to Dinkelbach, we reformulate the fractional problem as a univariate equation. To find the root of the univariate equation, the generalized Newton method is utilized that requires solving a nonconvex quadratic optimization problem at each iteration. A key difficulty with this problem is its nonconvexity. Using Lagrange duality, we show that this problem can be solved by solving a convex univariate minimization problem. Attainment of the global optimality conditions is discussed. Our preliminary numerical experiments on several randomly generated test problems show that, the new approach is much faster in finding the global optimal solution than the known semidefinite relaxation approach, especially when solving large scale problems.},
author = {Salahi, Maziar, Fallahi, Saeed},
journal = {Kybernetika},
keywords = {fractional optimization; indefinite quadratic optimization; semidefinite relaxation; diagonalization; generalized Newton method; fractional optimization; indefinite quadratic optimization; semidefinite relaxation; diagonalization; generalized Newton method},
language = {eng},
number = {2},
pages = {293-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the quadratic fractional optimization with a strictly convex quadratic constraint},
url = {http://eudml.org/doc/270116},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Salahi, Maziar
AU - Fallahi, Saeed
TI - On the quadratic fractional optimization with a strictly convex quadratic constraint
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 2
SP - 293
EP - 308
AB - In this paper, we have studied the problem of minimizing the ratio of two indefinite quadratic functions subject to a strictly convex quadratic constraint. First utilizing the relationship between fractional and parametric programming problems due to Dinkelbach, we reformulate the fractional problem as a univariate equation. To find the root of the univariate equation, the generalized Newton method is utilized that requires solving a nonconvex quadratic optimization problem at each iteration. A key difficulty with this problem is its nonconvexity. Using Lagrange duality, we show that this problem can be solved by solving a convex univariate minimization problem. Attainment of the global optimality conditions is discussed. Our preliminary numerical experiments on several randomly generated test problems show that, the new approach is much faster in finding the global optimal solution than the known semidefinite relaxation approach, especially when solving large scale problems.
LA - eng
KW - fractional optimization; indefinite quadratic optimization; semidefinite relaxation; diagonalization; generalized Newton method; fractional optimization; indefinite quadratic optimization; semidefinite relaxation; diagonalization; generalized Newton method
UR - http://eudml.org/doc/270116
ER -
References
top- Amaral, P., Judice, J., Sherali, H. D., 10.1016/j.cor.2006.08.007, Comput. Oper. Res 35 (2008), 1494-1509. Zbl1278.90371MR2578321DOI10.1016/j.cor.2006.08.007
- Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 10.1002/0471787779, Wiley, New York 1993. Zbl1140.90040MR2218478DOI10.1002/0471787779
- Beck, A., Ben-Tal, A., 10.1137/050624418, SIAM J. Optim. 17 (2006), 98-118. MR2219146DOI10.1137/050624418
- Beck, A., Ben-Tal, A., Teboulle, M., 10.1137/040616851, SIAM J. Matrix Anal. Appl. 28 (2006), 425-445. Zbl1115.65065MR2255337DOI10.1137/040616851
- Beck, A., Teboulle, M., On minimizing quadratically constrained ratio of two quadratic functions., J. Convex Anal. 17 (2010), 789-804. Zbl1213.90239MR2731279
- Beck, A., Teboulle, M., 10.1007/s10107-007-0181-x, Math. Program. 118 (2009), 13-35. Zbl1176.90451MR2470883DOI10.1007/s10107-007-0181-x
- Benson, H. P., 10.1016/j.ejor.2005.02.069, Eur. J. Oper. Res. 173 (2006), 351-369. Zbl1113.90122MR2230179DOI10.1016/j.ejor.2005.02.069
- Benson, H. P., 10.1007/s10957-007-9199-8, J. Optim. Theory Appl. 135 (2007), 1-17. Zbl1145.90089MR2342650DOI10.1007/s10957-007-9199-8
- Benson, H. P., 10.1016/j.ejor.2006.08.036, Eur. J. Oper. Res. 182 (2007), 597-611. Zbl1121.90102MR2324550DOI10.1016/j.ejor.2006.08.036
- Dinkelbach, W., 10.1287/mnsc.13.7.492, Manage Sci. 13 (1967), 492-498. Zbl0152.18402MR0242488DOI10.1287/mnsc.13.7.492
- Grant, M., Boyd, S., , 2013. DOI
- Laub, A. J., 10.1137/1.9780898717907, SIAM 2005. Zbl1077.15001MR2128817DOI10.1137/1.9780898717907
- Lo, A. W., MacKinlay, A. C., 10.1017/s1365100597002046, Macroecon. Dyn. 1 (1997), 102-134. Zbl0915.90025DOI10.1017/s1365100597002046
- Ohlson, J. A., Ziemba, W. T., 10.2307/2330229, J. Financ. Quant. Anal. 11 (1976), 57-71. DOI10.2307/2330229
- Pong, T. K., Wolkowicz, H., 10.1007/s10589-013-9635-7, Comput. Optim. Appl. 58 (2014), 273-322. MR3201963DOI10.1007/s10589-013-9635-7
- Shen, P. P., Yuan, G. X., 10.1007/s00186-006-0130-0, Math. Methods Oper. Res. 65 (2007), 445-459. Zbl1180.90331MR2314288DOI10.1007/s00186-006-0130-0
- Sturm, J. F., Zhang, S., 10.1287/moor.28.2.246.14485, Math. Oper. Res. 28 (2003), 246-267. Zbl1082.90086MR1980662DOI10.1287/moor.28.2.246.14485
- Tuy, H., Trach, P. T., Konno, H., 10.1023/b:jogo.0000035016.74398.e6, J. Glob. Optim. 29 (2004), 19-44. MR2077884DOI10.1023/b:jogo.0000035016.74398.e6
- Yamamoto, R., Konno, H., 10.1007/s10957-007-9188-y, J. Optim. Theory Appl. 133 (2007), 241-255. Zbl1151.90560MR2335266DOI10.1007/s10957-007-9188-y
- Ye, Y., Zhang, Sh., 10.1137/s105262340139001x, SIAM J. Optim. 14 (2003), 245-267. Zbl1043.90064MR2005943DOI10.1137/s105262340139001x
- Zhang, A., Hayashi, Sh., 10.3934/naco.2011.1.83, Numer. Algebra Control. Optim. 1 (2011), 83-98. Zbl1219.90169MR2806295DOI10.3934/naco.2011.1.83
- Zheng, X. J., Sun, X. L., Li, D., Xu, Y. F., 10.1007/s10898-011-9660-y, J. Glob. Optim. 52 (2012), 229-242. Zbl1266.90151MR2886307DOI10.1007/s10898-011-9660-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.