Locally solid topological lattice-ordered groups
Archivum Mathematicum (2015)
- Volume: 051, Issue: 2, page 107-128
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHong, Liang. "Locally solid topological lattice-ordered groups." Archivum Mathematicum 051.2 (2015): 107-128. <http://eudml.org/doc/270117>.
@article{Hong2015,
abstract = {Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.},
author = {Hong, Liang},
journal = {Archivum Mathematicum},
keywords = {characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets},
language = {eng},
number = {2},
pages = {107-128},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Locally solid topological lattice-ordered groups},
url = {http://eudml.org/doc/270117},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Hong, Liang
TI - Locally solid topological lattice-ordered groups
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 2
SP - 107
EP - 128
AB - Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
LA - eng
KW - characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets
UR - http://eudml.org/doc/270117
ER -
References
top- Aliprantis, C.D., 10.1090/S0002-9947-1974-0350372-0, Trans. Amer. Math. Soc. 196 (1974), 105–125. (1974) Zbl0258.46009MR0350372DOI10.1090/S0002-9947-1974-0350372-0
- Aliprantis, C.D., Burkinshaw, O., Positive Operators, Springer, Berlin, Heidelberg, New York., 1985. (1985) Zbl0608.47039MR0809372
- Aliprantis, C.D., Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, second ed., Springer, Berlin, Heidelberg, New York, 2003. (2003) Zbl1043.46003MR2011364
- Arhangel’skii, A., Tkachenko, M., Topological groups and related structures, Atlantic Press, Amsterdam, Paris, 2008. (2008) MR2433295
- Baer, R., 10.1215/S0012-7094-37-00308-9, Duke Math. J. 3 (1) (1937), 68–122. (1937) Zbl0016.20303MR1545974DOI10.1215/S0012-7094-37-00308-9
- Ball, R.N., 10.2140/pjm.1979.83.1, Pacific J. Math. 83 (1) (1979), 1–26. (1979) Zbl0434.06016MR0555035DOI10.2140/pjm.1979.83.1
- Ball, R.N., 10.1090/S0002-9947-1980-0567085-5, Trans. Amer. Math. Soc. 259 (2) (1980), 357–392. (1980) Zbl0441.06015MR0567085DOI10.1090/S0002-9947-1980-0567085-5
- Beckenstein, E., Narici, L., Suffel, C., Topological Algebras, North-Holland, Amsterdam, 1977. (1977) Zbl0348.46041MR0473835
- Birkhoff, G., 10.2307/1968871, Ann. of Math. 43 (2) (1941), 298–331. (1941) MR0006550DOI10.2307/1968871
- Birkhoff, G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., vol. 25, Providence, Rhode Island, third ed., 1967. (1967) Zbl0153.02501MR0029876
- Bourbaki, N., Elements of Mathematics: Topological Vectors Spaces, ch. 1–5, Springer, Berlin, New York, 1987. (1987) MR0910295
- Clifford, A.H., 10.2307/1968728, Ann. of Math. 41 (1940), 465–473. (1940) Zbl0025.00801MR0002134DOI10.2307/1968728
- Fremlin, D.H., 10.2140/pjm.1972.43.341, Pacific J. Math. 43 (1972), 341–347. (1972) MR0318832DOI10.2140/pjm.1972.43.341
- Fremlin, D.H., Topological Riesz Spaces and Measure Theorey, Cambridge University Press, Cambridge, 1974. (1974) MR0454575
- Fuchs, L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, New York, 1963. (1963) Zbl0137.02001MR0171864
- Fuchs, L., Riesz groups, Ann. Scuola Norm. Sup. Pisa 19 (1965), 1–34. (1965) Zbl0125.28703MR0180609
- Fuchs, L., Riesz vector spaces and Riesz algebra, Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1966. (1966) MR0203436
- Goffman, C., 10.1090/S0002-9939-1957-0087661-9, Proc. Amer. Math. Soc. 8 (1957), 547–550. (1957) Zbl0081.25801MR0087661DOI10.1090/S0002-9939-1957-0087661-9
- Gusić,, 10.1090/S0002-9939-98-04386-X, Proc. Amer. Math. Soc. 126 (9) (1998), 2593–2597. (1998) Zbl0943.06009MR1452805DOI10.1090/S0002-9939-98-04386-X
- Husain, T., Introduction to Topological Groups, W.B. Sounders Company, Philadelphia, London, 1966. (1966) Zbl0136.29402MR0200383
- Jaffard, P., Contribution à l’étude des groupes ordonnés, J. Math. Pures Appl. 32 (1953), 203–280, (French). (1953) Zbl0051.01303MR0057869
- Kawai, I., 10.2969/jmsj/00930281, J. Mat. Soc. Japan 9, 281–314. Zbl0079.32203MR0095399DOI10.2969/jmsj/00930281
- Khan, A.R., Rowlands, K., 10.1007/s10587-007-0088-y, Czechoslovak Math. J. 57 (3) (2007), 963–973. (2007) Zbl1174.54025MR2356933DOI10.1007/s10587-007-0088-y
- Luxemburg, W.A.J., Zaanen, A.C., Riesz Spaces, I, North-Holland, Amsterdam, 1971. (1971)
- Nakano, H., Linear topologies on semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 87–104. (1953) Zbl0053.25702MR0056851
- Namioka, I., Partially ordered linear topological spaces, Mem. Amer. Math. Soc., vol. 24, 1957, p. 50pp. (1957) Zbl0105.08901MR0094681
- Pierce, R., 10.2307/1969693, Ann. of Math. 59 (2), 287–291. Zbl0055.01502MR0062120DOI10.2307/1969693
- Pontrjagin, L., Topological Groups, Princeton University Press, Princeton, NJ, 1946, Translated by Emma Lehmer. (1946)
- Redfield, R.H., 10.1090/S0002-9947-1974-0327607-3, Trans. Amer. Math. Soc. 187 (1974), 103–125. (1974) Zbl0302.06028MR0327607DOI10.1090/S0002-9947-1974-0327607-3
- Roberts, G.T., Topologies in vector lattices, Math. Proc. Cambridge Philos. Soc. (1952). (1952) Zbl0047.10503MR0050873
- Šmarda, B., Topologies in -groups, Arch. Math. (Brno) 3 (2) (1967), 69–81. (1967) MR0223283
- Šmarda, B., Some types of topological -groups, Publ. Fac. Sci. Univ. J. E. Purkyne Brno, vol. 507, 1969. (1969) Zbl0241.22003MR0272940
- Teller, J.R., 10.2140/pjm.1964.14.709, Pacific J. Math. 14 (2) (1964), 709–718. (1964) Zbl0122.27904MR0163970DOI10.2140/pjm.1964.14.709
- Willard, S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. (1970) Zbl0205.26601MR0264581
- Zaanen, A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Heidelberg, New York, 1997. (1997) Zbl0878.47022MR1631533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.