Locally solid topological lattice-ordered groups

Liang Hong

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 2, page 107-128
  • ISSN: 0044-8753

Abstract

top
Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.

How to cite

top

Hong, Liang. "Locally solid topological lattice-ordered groups." Archivum Mathematicum 051.2 (2015): 107-128. <http://eudml.org/doc/270117>.

@article{Hong2015,
abstract = {Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.},
author = {Hong, Liang},
journal = {Archivum Mathematicum},
keywords = {characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets},
language = {eng},
number = {2},
pages = {107-128},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Locally solid topological lattice-ordered groups},
url = {http://eudml.org/doc/270117},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Hong, Liang
TI - Locally solid topological lattice-ordered groups
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 2
SP - 107
EP - 128
AB - Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
LA - eng
KW - characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets
UR - http://eudml.org/doc/270117
ER -

References

top
  1. Aliprantis, C.D., 10.1090/S0002-9947-1974-0350372-0, Trans. Amer. Math. Soc. 196 (1974), 105–125. (1974) Zbl0258.46009MR0350372DOI10.1090/S0002-9947-1974-0350372-0
  2. Aliprantis, C.D., Burkinshaw, O., Positive Operators, Springer, Berlin, Heidelberg, New York., 1985. (1985) Zbl0608.47039MR0809372
  3. Aliprantis, C.D., Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, second ed., Springer, Berlin, Heidelberg, New York, 2003. (2003) Zbl1043.46003MR2011364
  4. Arhangel’skii, A., Tkachenko, M., Topological groups and related structures, Atlantic Press, Amsterdam, Paris, 2008. (2008) MR2433295
  5. Baer, R., 10.1215/S0012-7094-37-00308-9, Duke Math. J. 3 (1) (1937), 68–122. (1937) Zbl0016.20303MR1545974DOI10.1215/S0012-7094-37-00308-9
  6. Ball, R.N., 10.2140/pjm.1979.83.1, Pacific J. Math. 83 (1) (1979), 1–26. (1979) Zbl0434.06016MR0555035DOI10.2140/pjm.1979.83.1
  7. Ball, R.N., 10.1090/S0002-9947-1980-0567085-5, Trans. Amer. Math. Soc. 259 (2) (1980), 357–392. (1980) Zbl0441.06015MR0567085DOI10.1090/S0002-9947-1980-0567085-5
  8. Beckenstein, E., Narici, L., Suffel, C., Topological Algebras, North-Holland, Amsterdam, 1977. (1977) Zbl0348.46041MR0473835
  9. Birkhoff, G., 10.2307/1968871, Ann. of Math. 43 (2) (1941), 298–331. (1941) MR0006550DOI10.2307/1968871
  10. Birkhoff, G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., vol. 25, Providence, Rhode Island, third ed., 1967. (1967) Zbl0153.02501MR0029876
  11. Bourbaki, N., Elements of Mathematics: Topological Vectors Spaces, ch. 1–5, Springer, Berlin, New York, 1987. (1987) MR0910295
  12. Clifford, A.H., 10.2307/1968728, Ann. of Math. 41 (1940), 465–473. (1940) Zbl0025.00801MR0002134DOI10.2307/1968728
  13. Fremlin, D.H., 10.2140/pjm.1972.43.341, Pacific J. Math. 43 (1972), 341–347. (1972) MR0318832DOI10.2140/pjm.1972.43.341
  14. Fremlin, D.H., Topological Riesz Spaces and Measure Theorey, Cambridge University Press, Cambridge, 1974. (1974) MR0454575
  15. Fuchs, L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, New York, 1963. (1963) Zbl0137.02001MR0171864
  16. Fuchs, L., Riesz groups, Ann. Scuola Norm. Sup. Pisa 19 (1965), 1–34. (1965) Zbl0125.28703MR0180609
  17. Fuchs, L., Riesz vector spaces and Riesz algebra, Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1966. (1966) MR0203436
  18. Goffman, C., 10.1090/S0002-9939-1957-0087661-9, Proc. Amer. Math. Soc. 8 (1957), 547–550. (1957) Zbl0081.25801MR0087661DOI10.1090/S0002-9939-1957-0087661-9
  19. Gusić,, 10.1090/S0002-9939-98-04386-X, Proc. Amer. Math. Soc. 126 (9) (1998), 2593–2597. (1998) Zbl0943.06009MR1452805DOI10.1090/S0002-9939-98-04386-X
  20. Husain, T., Introduction to Topological Groups, W.B. Sounders Company, Philadelphia, London, 1966. (1966) Zbl0136.29402MR0200383
  21. Jaffard, P., Contribution à l’étude des groupes ordonnés, J. Math. Pures Appl. 32 (1953), 203–280, (French). (1953) Zbl0051.01303MR0057869
  22. Kawai, I., 10.2969/jmsj/00930281, J. Mat. Soc. Japan 9, 281–314. Zbl0079.32203MR0095399DOI10.2969/jmsj/00930281
  23. Khan, A.R., Rowlands, K., 10.1007/s10587-007-0088-y, Czechoslovak Math. J. 57 (3) (2007), 963–973. (2007) Zbl1174.54025MR2356933DOI10.1007/s10587-007-0088-y
  24. Luxemburg, W.A.J., Zaanen, A.C., Riesz Spaces, I, North-Holland, Amsterdam, 1971. (1971) 
  25. Nakano, H., Linear topologies on semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 87–104. (1953) Zbl0053.25702MR0056851
  26. Namioka, I., Partially ordered linear topological spaces, Mem. Amer. Math. Soc., vol. 24, 1957, p. 50pp. (1957) Zbl0105.08901MR0094681
  27. Pierce, R., 10.2307/1969693, Ann. of Math. 59 (2), 287–291. Zbl0055.01502MR0062120DOI10.2307/1969693
  28. Pontrjagin, L., Topological Groups, Princeton University Press, Princeton, NJ, 1946, Translated by Emma Lehmer. (1946) 
  29. Redfield, R.H., 10.1090/S0002-9947-1974-0327607-3, Trans. Amer. Math. Soc. 187 (1974), 103–125. (1974) Zbl0302.06028MR0327607DOI10.1090/S0002-9947-1974-0327607-3
  30. Roberts, G.T., Topologies in vector lattices, Math. Proc. Cambridge Philos. Soc. (1952). (1952) Zbl0047.10503MR0050873
  31. Šmarda, B., Topologies in l -groups, Arch. Math. (Brno) 3 (2) (1967), 69–81. (1967) MR0223283
  32. Šmarda, B., Some types of topological l -groups, Publ. Fac. Sci. Univ. J. E. Purkyne Brno, vol. 507, 1969. (1969) Zbl0241.22003MR0272940
  33. Teller, J.R., 10.2140/pjm.1964.14.709, Pacific J. Math. 14 (2) (1964), 709–718. (1964) Zbl0122.27904MR0163970DOI10.2140/pjm.1964.14.709
  34. Willard, S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. (1970) Zbl0205.26601MR0264581
  35. Zaanen, A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Heidelberg, New York, 1997. (1997) Zbl0878.47022MR1631533

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.