Additive hazards regression with case-cohort sampled current status data
Wei Chen; Fengling Ren; Guosheng Tang
Kybernetika (2015)
- Volume: 51, Issue: 2, page 268-275
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topChen, Wei, Ren, Fengling, and Tang, Guosheng. "Additive hazards regression with case-cohort sampled current status data." Kybernetika 51.2 (2015): 268-275. <http://eudml.org/doc/270125>.
@article{Chen2015,
abstract = {In a case-cohort design, covariate histories are measured only on cases and a subcohort that is randomly selected from the entire cohort. This design has been widely used in large epidemiologic studies, especially when the exposures of interest are expensive to assemble for all the subjects. In this paper, we propose statistical procedures for analyzing case-cohort sampled current status data under the additive hazards model. Asymptotical properties of the proposed estimator are described and we suggest a resampling method to estimate the variances. Simulation studies show that the proposed method works well for finite sample sizes, and one data set is analyzed for illustrative purposes.},
author = {Chen, Wei, Ren, Fengling, Tang, Guosheng},
journal = {Kybernetika},
keywords = {additive hazards model; case-cohort; current status data; estimating equations; simple random sampling; additive hazards model; case-cohort; current status data; estimating equations; simple random sampling},
language = {eng},
number = {2},
pages = {268-275},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Additive hazards regression with case-cohort sampled current status data},
url = {http://eudml.org/doc/270125},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Chen, Wei
AU - Ren, Fengling
AU - Tang, Guosheng
TI - Additive hazards regression with case-cohort sampled current status data
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 2
SP - 268
EP - 275
AB - In a case-cohort design, covariate histories are measured only on cases and a subcohort that is randomly selected from the entire cohort. This design has been widely used in large epidemiologic studies, especially when the exposures of interest are expensive to assemble for all the subjects. In this paper, we propose statistical procedures for analyzing case-cohort sampled current status data under the additive hazards model. Asymptotical properties of the proposed estimator are described and we suggest a resampling method to estimate the variances. Simulation studies show that the proposed method works well for finite sample sizes, and one data set is analyzed for illustrative purposes.
LA - eng
KW - additive hazards model; case-cohort; current status data; estimating equations; simple random sampling; additive hazards model; case-cohort; current status data; estimating equations; simple random sampling
UR - http://eudml.org/doc/270125
ER -
References
top- Chen, C. M., Lu, T. F. C., Chen, M. H., Hsu, C. M., 10.1002/bimj.201100131, Biometrical J. 54 (2012), 641-656. MR2967765DOI10.1002/bimj.201100131
- Chen, K., Lo, S. H., 10.1093/biomet/86.4.755, Biometrika 86 (1999), 755-764. Zbl0940.62108MR1741975DOI10.1093/biomet/86.4.755
- Gilbert, P. B., Peterson, M. L., Follmann, D., Hudgens, M. G., Francis, D. P., Gurwith, M., Heyward, W. L., Jobes, D. V., Popovic, V., Self, S. G., Sinangil, F., Burke, D., Berman, P. W., 10.1086/428405, J. Infectious Diseases 191 (2005), 666-677. DOI10.1086/428405
- Groeneboom, P., Wellner, J A., 10.1007/978-3-0348-8621-5, Birkhauser, Basel 1992. Zbl0757.62017MR1180321DOI10.1007/978-3-0348-8621-5
- Jin, Z., Lin, D. Y., Wei, L. J., Ying, Z., 10.1093/biomet/90.2.341, Biometrika 90 (2003), 341-353. Zbl1034.62103MR1986651DOI10.1093/biomet/90.2.341
- Kong, L., Cai, J., Sen, P. K., Asymptotic results for fitting semiparametric transformation models to failure time data from case-cohort studies., Statistica Sinica 16 (2006), 135-151. Zbl1087.62111MR2256083
- Kong, L., Cai, J., 10.1111/j.1541-0420.2008.01055.x, Biometrics 65 (2009), 135-142. Zbl1159.62076MR2665853DOI10.1111/j.1541-0420.2008.01055.x
- Kulich, M., Lin, D. Y., 10.1093/biomet/87.1.73, Biometrika 87 (2000), 73-87. Zbl0974.62104MR1766829DOI10.1093/biomet/87.1.73
- Li, Z., Gilbert, P., Nan, B., 10.1111/j.1541-0420.2008.00998.x, Biometrics 64 (2008), 1247-1255. Zbl1151.62089MR2522274DOI10.1111/j.1541-0420.2008.00998.x
- Li, Z., Nan, B., 10.1002/cjs.10111, Canadian J. Statist. 39 (2011), 557-577. Zbl1228.62124MR2860827DOI10.1002/cjs.10111
- Y.Lin, D., Oakes, D., Ying, Z., 10.1093/biomet/85.2.289, Biometrika 85 (1998), 289-298. MR1649115DOI10.1093/biomet/85.2.289
- Lin, D. Y., Ying, Z., 10.1093/biomet/81.1.61, Biometrika 81 (1994), 61-71. Zbl0796.62099MR1279656DOI10.1093/biomet/81.1.61
- Lindsey, J. C., Ryan, L. M., 10.1289/ehp.94102s19, Environmental Health Perspectives Supplements 102 (1994), 9-17. DOI10.1289/ehp.94102s19
- Lu, W., Tsiatis, A. A., 10.1093/biomet/93.1.207, Biometrika 93 (2006), 207-214. Zbl1152.62084MR2277751DOI10.1093/biomet/93.1.207
- Ma, S., 10.1007/s00362-007-0359-y, Statistical Papers 48 (2007), 595-608. Zbl1125.62121MR2408889DOI10.1007/s00362-007-0359-y
- Nan, B., Yu, M., Kalbfleisch, J. D., 10.1093/biomet/93.4.747, Biometrika 93 (2006), 747-762. MR2285069DOI10.1093/biomet/93.4.747
- Neyman, J., 10.1080/01621459.1938.10503378, J. Amer. Statist. Assoc. 33 (1938), 101-116. Zbl0018.22603DOI10.1080/01621459.1938.10503378
- Prentice, R. L., 10.1093/biomet/73.1.1, Biometrika 73 (1986), 1-11. Zbl0595.62111DOI10.1093/biomet/73.1.1
- Self, S. G., Prentice, R. L., 10.1214/aos/1176350691, Ann. Statist. 16 (1988), 64-81. Zbl0666.62108MR0924857DOI10.1214/aos/1176350691
- Sun, J., 10.1007/0-387-37119-2, Springer, New York 2006. MR2287318DOI10.1007/0-387-37119-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.