Existence and controllability for nondensely defined partial neutral functional differential inclusions

Khalil Ezzinbi; Soumia Lalaoui Rhali

Applications of Mathematics (2015)

  • Volume: 60, Issue: 3, page 321-340
  • ISSN: 0862-7940

Abstract

top
We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.

How to cite

top

Ezzinbi, Khalil, and Lalaoui Rhali, Soumia. "Existence and controllability for nondensely defined partial neutral functional differential inclusions." Applications of Mathematics 60.3 (2015): 321-340. <http://eudml.org/doc/270138>.

@article{Ezzinbi2015,
abstract = {We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.},
author = {Ezzinbi, Khalil, Lalaoui Rhali, Soumia},
journal = {Applications of Mathematics},
keywords = {nondensely operator; neutral differential inclusion; multivalued map; fixed point; controllability; C$_\{0\}$-semigroup; nondensely operator; neutral differential inclusion; multivalued map; fixed point; controllability; C$_\{0\}$-semigroup},
language = {eng},
number = {3},
pages = {321-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and controllability for nondensely defined partial neutral functional differential inclusions},
url = {http://eudml.org/doc/270138},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Ezzinbi, Khalil
AU - Lalaoui Rhali, Soumia
TI - Existence and controllability for nondensely defined partial neutral functional differential inclusions
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 321
EP - 340
AB - We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.
LA - eng
KW - nondensely operator; neutral differential inclusion; multivalued map; fixed point; controllability; C$_{0}$-semigroup; nondensely operator; neutral differential inclusion; multivalued map; fixed point; controllability; C$_{0}$-semigroup
UR - http://eudml.org/doc/270138
ER -

References

top
  1. Abada, N., Benchohra, M., Hammouche, H., 10.1016/j.jde.2009.03.004, J. Differ. Equations 246 (2009), 3834-3863. (2009) Zbl1171.34052MR2514728DOI10.1016/j.jde.2009.03.004
  2. Abada, N., Benchohra, M., Hammouche, H., Ouahab, A., 10.7151/dmdico.1088, Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. (2007) Zbl1145.34047MR2413817DOI10.7151/dmdico.1088
  3. Adimy, M., Ezzinbi, K., 10.1006/jdeq.1998.3446, J. Differ. Equations 147 (1998), 285-332. (1998) Zbl0915.35109MR1633941DOI10.1006/jdeq.1998.3446
  4. Adimy, M., Ezzinbi, K., Existence and linearized stability for partial neutral functional differential equations with nondense domains, Differ. Equ. Dyn. Syst. 7 (1999), 371-417. (1999) Zbl0983.34075MR1862582
  5. Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S., 10.1007/s00009-010-0023-6, Mediterr. J. Math. 7 (2010), 1-18. (2010) Zbl1214.34065MR2645898DOI10.1007/s00009-010-0023-6
  6. Belmekki, M., Benchohra, M., Górniewicz, L., Ntouyas, S. K., Existence results for perturbed semilinear functional differential inclusions with infinite delay, Nonlinear Anal. Forum 13 (2008), 135-156. (2008) MR2808070
  7. Belmekki, M., Benchohra, M., Ntouyas, S. K., Existence results for semilinear perturbed functional differential equations with nondensely defined operators, Fixed Point Theory Appl. 2006 (2006), 13 pages, Article ID 43696. (2006) Zbl1150.34592MR2270321
  8. Benchohra, M., Górniewicz, L., Ntouyas, S. K., Ouahab, A., 10.4171/ZAA/1291, Z. Anal. Anwend. 25 (2006), 311-325. (2006) Zbl1101.93007MR2251956DOI10.4171/ZAA/1291
  9. Benchohra, M., Ouahab, A., 10.1016/j.na.2004.12.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61 (2005), 405-423. (2005) Zbl1086.34062MR2123084DOI10.1016/j.na.2004.12.002
  10. Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Mathematics 580 Springer, Berlin (1977). (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087688
  11. Prato, G. Da, Sinestrari, E., Differential operators with non dense domain, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 14 (1987), 285-344. (1987) Zbl0652.34069MR0939631
  12. Frigon, M., Fixed point results for multivalued contractions on gauge spaces, Set Valued Mappings with Applications in Nonlinear Analysis R. Agarwal et al. Ser. Math. Anal. Appl. 4 Taylor & Francis, London (2002), 175-181. (2002) Zbl1013.47013MR1938847
  13. Hale, J. K., Partial neutral functional differential equations, Rev. Roum. Math. Pures Appl. 39 (1994), 339-344. (1994) Zbl0817.35119MR1317773
  14. Henderson, J., Ouahab, A., Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. 2005 (2005), 17 pages. (2005) Zbl1111.34045MR2176192
  15. Hernandez, M. E., A comment on the papers: Controllability results for functional semilinear differential inclusions in Fréchet spaces and Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 2243-2245. (2007) Zbl1290.34077MR2311027
  16. Mahmudov, E. N., Approximation and Optimization of Discrete and Differential Inclusions, Elsevier Insights Elsevier, Amsterdam (2011). (2011) Zbl1235.65002MR3293164
  17. Mahmudov, E. N., Mastaliyeva, D., 10.1007/s10883-014-9215-x, J. Dyn. Control Syst. 21 (2015), 25-46. (2015) Zbl1317.49033MR3297939DOI10.1007/s10883-014-9215-x
  18. Mordukhovich, B. S., Wang, L., 10.1137/S0363012902420376, SIAM J. Control Optimization 43 (2004), 111-136. (2004) Zbl1208.49031MR2082695DOI10.1137/S0363012902420376
  19. Wu, J., 10.1007/978-1-4612-4050-1, Applied Mathematical Sciences 119 Springer, New York (1996). (1996) Zbl0870.35116MR1415838DOI10.1007/978-1-4612-4050-1
  20. Wu, J., Xia, H., 10.1006/jdeq.1996.0009, J. Differ. Equations 124 (1996), 247-278. (1996) Zbl0840.34080MR1368068DOI10.1006/jdeq.1996.0009
  21. Wu, J., Xia, H., 10.1023/A:1021973228398, J. Dyn. Differ. Equations 11 (1999), 209-238. (1999) Zbl0939.35188MR1695243DOI10.1023/A:1021973228398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.