Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces

Abada Nadjat; Benchohra Mouffak; Hammouche Hadda; Ouahab Abdelghani

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)

  • Volume: 27, Issue: 2, page 329-347
  • ISSN: 1509-9407

Abstract

top
In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.

How to cite

top

Abada Nadjat, et al. "Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27.2 (2007): 329-347. <http://eudml.org/doc/271146>.

@article{AbadaNadjat2007,
abstract = {In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.},
author = {Abada Nadjat, Benchohra Mouffak, Hammouche Hadda, Ouahab Abdelghani},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {semilinear functional differential inclusions; impulses; mild solution; fixed point; controllability; extrapolation space; nondensely defined operator; differential equations; differential inclusions},
language = {eng},
number = {2},
pages = {329-347},
title = {Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces},
url = {http://eudml.org/doc/271146},
volume = {27},
year = {2007},
}

TY - JOUR
AU - Abada Nadjat
AU - Benchohra Mouffak
AU - Hammouche Hadda
AU - Ouahab Abdelghani
TI - Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2007
VL - 27
IS - 2
SP - 329
EP - 347
AB - In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.
LA - eng
KW - semilinear functional differential inclusions; impulses; mild solution; fixed point; controllability; extrapolation space; nondensely defined operator; differential equations; differential inclusions
UR - http://eudml.org/doc/271146
ER -

References

top
  1. [1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow John Wiley & Sons, Inc., New York, 1991. 
  2. [2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995. 
  3. [3] B. Amir and L. Maniar, Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Math. 13 (1998), 95-105. 
  4. [4] B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal 6 (1999), 1-11. 
  5. [5] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplacian Transforms and Cauchy Problems, Monographs Math, Vol. 96, Birkhäuser Verlag, 2001. 
  6. [6] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-227. 
  7. [7] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Existence results for nondensely defined impulsive semilinear functional differential equations, Nonlinear Analysis and Applications, edited by R.P. Agarwal and D. O'Regan, Kluwer, 2003. 
  8. [8] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006. 
  9. [9] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), 405-423. 
  10. [10] G. Da Prato and E. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei. 72 (1982), 330-332. 
  11. [11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Sci. 14 (1987), 285-344. 
  12. [12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. 
  13. [13] M. Frigon, Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl. 4, Taylor & Francis, London, 2002. 
  14. [14] E.P. Gatsori, L. Górniewicz and S.K. Ntouyas, Controllability results for nondensely defined evolution impulsive differential inclusions with nonlocal conditions, Panamer. Math. J. 15 (2) (2005), 1-27. 
  15. [15] G. Guhring, F. Rabiger and W. Ruess, Linearized stability for semilinear non-autonomous evolution equations to retarded differential equations, Differential Integral Equations 13 (2000), 503-527. 
  16. [16] J. Henderson and A. Ouahab, Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. (2005), (11), 1-17. 
  17. [17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991. 
  18. [18] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. 
  19. [19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, 1995. 
  20. [20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations on infinite-dimensional spaces, Circ. Mat. Palermo 47 (2) (1998), 331-346. 
  21. [21] R. Nagel and E. Sinestrari, Inhomogeneous Volterra Integrodifferential Equations for Hille-Yosida operators, In Functional Analysis, edited by K.D. Bierstedt, A. Pietsch, W.M. Ruess and D. Voigt, 51-70, Marcel Dekker, 1998. 
  22. [22] J. Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer-Verlag, New York, 1992. 
  23. [23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. 
  24. [24] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-85), 197-219. 
  25. [25] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.