# Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces

N. Abada; M. Benchohra; H. Hammouche; A. Ouahab

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)

- Volume: 27, Issue: 2, page 329-347
- ISSN: 1509-9407

## Access Full Article

top## Abstract

top## How to cite

topN. Abada, et al. "Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27.2 (2007): 329-347. <http://eudml.org/doc/271146>.

@article{N2007,

abstract = {In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.},

author = {N. Abada, M. Benchohra, H. Hammouche, A. Ouahab},

journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},

keywords = {semilinear functional differential inclusions; impulses; mild solution; fixed point; controllability; extrapolation space; nondensely defined operator; differential equations; differential inclusions},

language = {eng},

number = {2},

pages = {329-347},

title = {Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces},

url = {http://eudml.org/doc/271146},

volume = {27},

year = {2007},

}

TY - JOUR

AU - N. Abada

AU - M. Benchohra

AU - H. Hammouche

AU - A. Ouahab

TI - Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces

JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization

PY - 2007

VL - 27

IS - 2

SP - 329

EP - 347

AB - In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.

LA - eng

KW - semilinear functional differential inclusions; impulses; mild solution; fixed point; controllability; extrapolation space; nondensely defined operator; differential equations; differential inclusions

UR - http://eudml.org/doc/271146

ER -

## References

top- [1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow John Wiley & Sons, Inc., New York, 1991.
- [2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995.
- [3] B. Amir and L. Maniar, Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Math. 13 (1998), 95-105.
- [4] B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal 6 (1999), 1-11. Zbl0941.34059
- [5] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplacian Transforms and Cauchy Problems, Monographs Math, Vol. 96, Birkhäuser Verlag, 2001. Zbl0978.34001
- [6] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-227. Zbl1130.93310
- [7] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Existence results for nondensely defined impulsive semilinear functional differential equations, Nonlinear Analysis and Applications, edited by R.P. Agarwal and D. O'Regan, Kluwer, 2003. Zbl1051.34068
- [8] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006. Zbl1130.34003
- [9] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), 405-423. Zbl1086.34062
- [10] G. Da Prato and E. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei. 72 (1982), 330-332. Zbl0527.46055
- [11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Sci. 14 (1987), 285-344. Zbl0652.34069
- [12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. Zbl0952.47036
- [13] M. Frigon, Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl. 4, Taylor & Francis, London, 2002.
- [14] E.P. Gatsori, L. Górniewicz and S.K. Ntouyas, Controllability results for nondensely defined evolution impulsive differential inclusions with nonlocal conditions, Panamer. Math. J. 15 (2) (2005), 1-27. Zbl1075.93003
- [15] G. Guhring, F. Rabiger and W. Ruess, Linearized stability for semilinear non-autonomous evolution equations to retarded differential equations, Differential Integral Equations 13 (2000), 503-527. Zbl0990.34068
- [16] J. Henderson and A. Ouahab, Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. (2005), (11), 1-17. Zbl1111.34045
- [17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.
- [18] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. Zbl0719.34002
- [19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, 1995. Zbl0816.35001
- [20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations on infinite-dimensional spaces, Circ. Mat. Palermo 47 (2) (1998), 331-346. Zbl0916.34065
- [21] R. Nagel and E. Sinestrari, Inhomogeneous Volterra Integrodifferential Equations for Hille-Yosida operators, In Functional Analysis, edited by K.D. Bierstedt, A. Pietsch, W.M. Ruess and D. Voigt, 51-70, Marcel Dekker, 1998. Zbl0790.45011
- [22] J. Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer-Verlag, New York, 1992. Zbl0780.47026
- [23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [24] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-85), 197-219.
- [25] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

## Citations in EuDML Documents

top- Irene Benedetti, Valeri Obukhovskii, Pietro Zecca, Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator
- Nadjet Abada, Ravi P. Agarwal, Mouffak Benchohra, Hadda Hammouche, Impulsive semilinear neutral functional differential inclusions with multivalued jumps
- Khalil Ezzinbi, Soumia Lalaoui Rhali, Existence and controllability for nondensely defined partial neutral functional differential inclusions

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.