Symmetric products of the Euclidean spaces and the spheres
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 2, page 209-221
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChinen, Naotsugu. "Symmetric products of the Euclidean spaces and the spheres." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 209-221. <http://eudml.org/doc/270140>.
@article{Chinen2015,
abstract = {By $F_n(X)$, $n \ge 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.},
author = {Chinen, Naotsugu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere; isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere},
language = {eng},
number = {2},
pages = {209-221},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symmetric products of the Euclidean spaces and the spheres},
url = {http://eudml.org/doc/270140},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Chinen, Naotsugu
TI - Symmetric products of the Euclidean spaces and the spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 209
EP - 221
AB - By $F_n(X)$, $n \ge 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.
LA - eng
KW - isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere; isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere
UR - http://eudml.org/doc/270140
ER -
References
top- Bandt C., 10.1002/mana.19861290116, Math. Nachr. 129 (1986), 175–183. Zbl0609.54008MR0864632DOI10.1002/mana.19861290116
- Belobrov P.K., The Čebyšev point of a system of sets, Izv. Vysš. Učebn. Zaved. Matematika 55 (1966), 18–24. Zbl0192.22501MR0208332
- Bestvina M., -trees in Topology, Geometry, and Group Theory, Handbook of Geometric Topology, 55–91, North-Holland, Amsterdam, 2002. MR1886668
- Borsuk K., Ulam S., 10.1090/S0002-9904-1931-05290-3, Bull. Amer. Math. Soc. 37 (1931), 875–882. Zbl0003.22402MR1562283DOI10.1090/S0002-9904-1931-05290-3
- Borsuk K., On the third symmetric potency of the circumference, Fund. Math. 36 (1949), 236–244. Zbl0039.19301MR0035987
- Borovikova M., Ibragimov Z., 10.1007/BF03321726, Comput. Methods Funct. Theory 9 (2009), 255–268. MR2478275DOI10.1007/BF03321726
- Borovikova M., Ibragimov Z., Yousefi H., Symmetric products of the real line, J. Anal. 18 (2010), 53–67. Zbl1239.30030MR2850235
- Bott R., On the third symmetric potency of , Fund. Math. 39 (1952), 264–268. Zbl0050.17801MR0054954
- Bridson M.R., Haefliger A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, Berlin, 1999. Zbl0988.53001MR1744486
- Chinen N., Koyama A., 10.1016/j.topol.2010.07.012, Topology Appl. 157 (2010), 2613–2621. Zbl1205.54018MR2725354DOI10.1016/j.topol.2010.07.012
- Foertsch T., 10.4064/cm103-1-9, Colloq. Math. 103 (2005), 71–84. Zbl1077.53063MR2148951DOI10.4064/cm103-1-9
- Illanes A., Nadler S.B., Jr., , Marcel Dekker, New York, 1999. MR1670250
- Ivanshin P.N., Sosov E.N., Local Lipschitz property for the Chebyshev center mapping over N-nets, Mat. Vesnik 60 (2008), 9–22. Zbl1199.54169MR2403268
- Kovalev L.V., 10.1090/S0002-9939-2014-12280-5, Proc. Amer. Math. Soc. 143 (2015), 801-809. MR3283666DOI10.1090/S0002-9939-2014-12280-5
- Molski R., On symmetric product, Fund. Math. 44 (1957), 165–170. MR0092953
- Morton H.R., Symmetric product of the circle, Proc. Cambridge Philos. Soc. 63 (1967), 349–352. MR0210096
- Valentine F.A., Convex Sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. Zbl0333.52001MR0170264
- Wu W., Note sur les produits essentiels symétriques des espaces topologiques, C.R. Acad. Sci. Paris 224 (1947), 1139–1141. MR0019914
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.