Symmetric products of the Euclidean spaces and the spheres

Naotsugu Chinen

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 209-221
  • ISSN: 0010-2628

Abstract

top
By F n ( X ) , n 1 , we denote the n -th symmetric product of a metric space ( X , d ) as the space of the non-empty finite subsets of X with at most n elements endowed with the Hausdorff metric d H . In this paper we shall describe that every isometry from the n -th symmetric product F n ( X ) into itself is induced by some isometry from X into itself, where X is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the n -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the 2 nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.

How to cite

top

Chinen, Naotsugu. "Symmetric products of the Euclidean spaces and the spheres." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 209-221. <http://eudml.org/doc/270140>.

@article{Chinen2015,
abstract = {By $F_n(X)$, $n \ge 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.},
author = {Chinen, Naotsugu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere; isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere},
language = {eng},
number = {2},
pages = {209-221},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symmetric products of the Euclidean spaces and the spheres},
url = {http://eudml.org/doc/270140},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Chinen, Naotsugu
TI - Symmetric products of the Euclidean spaces and the spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 209
EP - 221
AB - By $F_n(X)$, $n \ge 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.
LA - eng
KW - isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere; isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere
UR - http://eudml.org/doc/270140
ER -

References

top
  1. Bandt C., 10.1002/mana.19861290116, Math. Nachr. 129 (1986), 175–183. Zbl0609.54008MR0864632DOI10.1002/mana.19861290116
  2. Belobrov P.K., The Čebyšev point of a system of sets, Izv. Vysš. Učebn. Zaved. Matematika 55 (1966), 18–24. Zbl0192.22501MR0208332
  3. Bestvina M., -trees in Topology, Geometry, and Group Theory, Handbook of Geometric Topology, 55–91, North-Holland, Amsterdam, 2002. MR1886668
  4. Borsuk K., Ulam S., 10.1090/S0002-9904-1931-05290-3, Bull. Amer. Math. Soc. 37 (1931), 875–882. Zbl0003.22402MR1562283DOI10.1090/S0002-9904-1931-05290-3
  5. Borsuk K., On the third symmetric potency of the circumference, Fund. Math. 36 (1949), 236–244. Zbl0039.19301MR0035987
  6. Borovikova M., Ibragimov Z., 10.1007/BF03321726, Comput. Methods Funct. Theory 9 (2009), 255–268. MR2478275DOI10.1007/BF03321726
  7. Borovikova M., Ibragimov Z., Yousefi H., Symmetric products of the real line, J. Anal. 18 (2010), 53–67. Zbl1239.30030MR2850235
  8. Bott R., On the third symmetric potency of S 1 , Fund. Math. 39 (1952), 264–268. Zbl0050.17801MR0054954
  9. Bridson M.R., Haefliger A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, Berlin, 1999. Zbl0988.53001MR1744486
  10. Chinen N., Koyama A., 10.1016/j.topol.2010.07.012, Topology Appl. 157 (2010), 2613–2621. Zbl1205.54018MR2725354DOI10.1016/j.topol.2010.07.012
  11. Foertsch T., 10.4064/cm103-1-9, Colloq. Math. 103 (2005), 71–84. Zbl1077.53063MR2148951DOI10.4064/cm103-1-9
  12. Illanes A., Nadler S.B., Jr., , Marcel Dekker, New York, 1999. MR1670250
  13. Ivanshin P.N., Sosov E.N., Local Lipschitz property for the Chebyshev center mapping over N-nets, Mat. Vesnik 60 (2008), 9–22. Zbl1199.54169MR2403268
  14. Kovalev L.V., 10.1090/S0002-9939-2014-12280-5, Proc. Amer. Math. Soc. 143 (2015), 801-809. MR3283666DOI10.1090/S0002-9939-2014-12280-5
  15. Molski R., On symmetric product, Fund. Math. 44 (1957), 165–170. MR0092953
  16. Morton H.R., Symmetric product of the circle, Proc. Cambridge Philos. Soc. 63 (1967), 349–352. MR0210096
  17. Valentine F.A., Convex Sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. Zbl0333.52001MR0170264
  18. Wu W., Note sur les produits essentiels symétriques des espaces topologiques, C.R. Acad. Sci. Paris 224 (1947), 1139–1141. MR0019914

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.