The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Symmetric products of the Euclidean spaces and the spheres”

On compactness and connectedness of the paratingent

Wojciech Zygmunt (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this note we shall prove that for a continuous function ϕ : Δ n , where Δ ,  the paratingent of ϕ at a Δ is a non-empty and compact set in n if and only if ϕ satisfies Lipschitz condition in a neighbourhood of a . Moreover, in this case the paratingent is a connected set.

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

Induced mappings on hyperspaces F n K ( X )

Enrique Castañeda-Alvarado, Roberto C. Mondragón-Alvarez, Norberto Ordoñez (2024)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a metric continuum X and a positive integer n , F n ( X ) denotes the hyperspace of all nonempty subsets of X with at most n points endowed with the Hausdorff metric. For K F n ( X ) , F n ( K , X ) denotes the set of elements of F n ( X ) containing K and F n K ( X ) denotes the quotient space obtained from F n ( X ) by shrinking F n ( K , X ) to one point set. Given a map f : X Y between continua, f n : F n ( X ) F n ( Y ) denotes the induced map defined by f n ( A ) = f ( A ) . Let K F n ( X ) , we shall consider the induced map in the natural way f n , K : F n K ( X ) F n f ( K ) ( Y ) . In this paper we consider the maps f , f n , f n , K for some...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

The real symmetric matrices of odd order with a P-set of maximum size

Zhibin Du, Carlos Martins da Fonseca (2016)

Czechoslovak Mathematical Journal

Similarity:

Suppose that A is a real symmetric matrix of order n . Denote by m A ( 0 ) the nullity of A . For a nonempty subset α of { 1 , 2 , ... , n } , let A ( α ) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α . When m A ( α ) ( 0 ) = m A ( 0 ) + | α | , we call α a P-set of A . It is known that every P-set of A contains at most n / 2 elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As...

Hardness of embedding simplicial complexes in d

Jiří Matoušek, Martin Tancer, Uli Wagner (2011)

Journal of the European Mathematical Society

Similarity:

Let 𝙴𝙼𝙱𝙴𝙳 k d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k , does there exist a (piecewise linear) embedding of K into d ? Known results easily imply polynomiality of 𝙴𝙼𝙱𝙴𝙳 k 2 ( k = 1 , 2 ; the case k = 1 , d = 2 is graph planarity) and of 𝙴𝙼𝙱𝙴𝙳 k 2 k for all k 3 . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that 𝙴𝙼𝙱𝙴𝙳 d d and 𝙴𝙼𝙱𝙴𝙳 ( d - 1 ) d are undecidable for each d 5 . Our main result is NP-hardness of 𝙴𝙼𝙱𝙴𝙳 2 4 and, more generally, of 𝙴𝙼𝙱𝙴𝙳 k d for all...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...