On the structural result on normal plane maps
Tomás Madaras; Andrea Marcinová
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 2, page 293-303
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topTomás Madaras, and Andrea Marcinová. "On the structural result on normal plane maps." Discussiones Mathematicae Graph Theory 22.2 (2002): 293-303. <http://eudml.org/doc/270155>.
@article{TomásMadaras2002,
abstract = {We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by $6 + [(2D+12)/(D-2)]((D-1)^\{(t-1)\} - 1)$. This improves a recent bound $6 + [(3D+3)/(D-2)]((D-1)^\{t-1\}-1)$, D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.},
author = {Tomás Madaras, Andrea Marcinová},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {plane map; distance colouring},
language = {eng},
number = {2},
pages = {293-303},
title = {On the structural result on normal plane maps},
url = {http://eudml.org/doc/270155},
volume = {22},
year = {2002},
}
TY - JOUR
AU - Tomás Madaras
AU - Andrea Marcinová
TI - On the structural result on normal plane maps
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 2
SP - 293
EP - 303
AB - We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by $6 + [(2D+12)/(D-2)]((D-1)^{(t-1)} - 1)$. This improves a recent bound $6 + [(3D+3)/(D-2)]((D-1)^{t-1}-1)$, D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.
LA - eng
KW - plane map; distance colouring
UR - http://eudml.org/doc/270155
ER -
References
top- [1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990) 95-110, doi: 10.1007/BF01787722. Zbl0716.05018
- [2] O. Borodin, Joint generalization of theorems by Lebesgue and Kotzig, Diskret. Mat. 3 (1991) 24-27 (in Russian). Zbl0742.05034
- [3] O. Borodin, Joint colouring of vertices, edges and faces of plane graphs, Metody Diskret. Analiza 47 (1988) 27-37 (in Russian). Zbl0707.05023
- [4] M. Fellows, P. Hell and K. Seyffarth, Constructions of dense planar networks, manuscript, 1993.
- [5] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, Discrete Math. 236 (2001) 167-177.
- [6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV 5 (1955) 233-237 (in Slovak).
- [7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48. Zbl0165.57302
- [8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84 (Bari, Italy) North-Holland Math. Stud. 123 (North-Holland, Amsterdam-New York, 1986) (and Annals Discrete Math. 30, 1986) 275-284.
- [9] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43. Zbl0024.28701
- [10] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010.
- [11] J. van den Heuvel and S. McGuinness, Colouring the Square of a Planar Graph, preprint, 2001. Zbl1008.05065
- [12] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.