On distance local connectivity and vertex distance colouring
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 2, page 209-227
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topPřemysl Holub. "On distance local connectivity and vertex distance colouring." Discussiones Mathematicae Graph Theory 27.2 (2007): 209-227. <http://eudml.org/doc/270169>.
@article{PřemyslHolub2007,
abstract = {In this paper, we give some sufficient conditions for distance local connectivity of a graph, and a degree condition for local connectivity of a k-connected graph with large diameter. We study some relationships between t-distance chromatic number and distance local connectivity of a graph and give an upper bound on the t-distance chromatic number of a k-connected graph with diameter d.},
author = {Přemysl Holub},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {degree condition; distance local connectivity; distance chromatic number},
language = {eng},
number = {2},
pages = {209-227},
title = {On distance local connectivity and vertex distance colouring},
url = {http://eudml.org/doc/270169},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Přemysl Holub
TI - On distance local connectivity and vertex distance colouring
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 2
SP - 209
EP - 227
AB - In this paper, we give some sufficient conditions for distance local connectivity of a graph, and a degree condition for local connectivity of a k-connected graph with large diameter. We study some relationships between t-distance chromatic number and distance local connectivity of a graph and give an upper bound on the t-distance chromatic number of a k-connected graph with diameter d.
LA - eng
KW - degree condition; distance local connectivity; distance chromatic number
UR - http://eudml.org/doc/270169
ER -
References
top- [1] P. Baldi, On a generalized family of colourings, Graphs Combin. 6 (1990) 95-110, doi: 10.1007/BF01787722. Zbl0716.05018
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, 1976). Zbl1226.05083
- [3] G. Chartrand and R.E. Pippert, Locally connected graphs, Cas. pro pestování matematiky 99 (1974) 158-163. Zbl0278.05113
- [4] A. Chen, A. Gyárfás and R.H. Schelp, Vertex coloring with a distance restriction, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00094-6. Zbl0958.05053
- [5] P. Holub and L. Xiong, On Distance local connectivity and the hamiltonian index, submitted to Discrete Math. Zbl1285.05105
- [6] S. Jendrol' and Z. Skupień, Local structures in plane maps and distance colourings, Discrete Math. 236 (2001) 167-177, doi: 10.1016/S0012-365X(00)00440-4. Zbl0990.05043
- [7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48. Zbl0165.57302
- [8] F. Kramer and H. Kramer H, On the generalized chromatic number, Ann. Discrete Math. 30 (1986) 275-284. Zbl0601.05020
- [9] T. Madaras and A. Marcinová, On the structural result on normal plane maps, Discuss. Math. Graph Theory 22 (2002) 293-303, doi: 10.7151/dmgt.1176. Zbl1027.05028
- [10] Z. Ryjácek, On a closure concept in claw-free graphs, J. Combin. Theory (B) 70 (1997) 217-224, doi: 10.1006/jctb.1996.1732. Zbl0872.05032
- [11] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010. Zbl0833.05036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.