Even [a,b]-factors in graphs
Mekkia Kouider; Preben Dahl Vestergaard
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 3, page 431-441
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMekkia Kouider, and Preben Dahl Vestergaard. "Even [a,b]-factors in graphs." Discussiones Mathematicae Graph Theory 24.3 (2004): 431-441. <http://eudml.org/doc/270159>.
@article{MekkiaKouider2004,
abstract = {Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.},
author = {Mekkia Kouider, Preben Dahl Vestergaard},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {even factor; eulerian; spanning subgraph; Eulerian},
language = {eng},
number = {3},
pages = {431-441},
title = {Even [a,b]-factors in graphs},
url = {http://eudml.org/doc/270159},
volume = {24},
year = {2004},
}
TY - JOUR
AU - Mekkia Kouider
AU - Preben Dahl Vestergaard
TI - Even [a,b]-factors in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2004
VL - 24
IS - 3
SP - 431
EP - 441
AB - Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.
LA - eng
KW - even factor; eulerian; spanning subgraph; Eulerian
UR - http://eudml.org/doc/270159
ER -
References
top- [1] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103. Zbl0587.05048
- [2] A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935. Zbl0573.05044
- [3] Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.
- [4] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993).
- [5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305. Zbl0661.05049
- [6] M. Kano, [a,b] -factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111.
- [7] M. Kano and A. Saito, [a,b] -factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8.
- [8] M. Kano, A sufficient condition for a graph to have [a,b] -factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576. Zbl0746.05051
- [9] M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica.
- [10] M. Kouider and M. Maheo, 2 edge-connected [2,k] -factors in graphs, JCMCC 35 (2000) 75-89.
- [11] M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147. Zbl1026.05092
- [12] Y. Li and M. Cai, A degree condition for a graph to have [a,b] -factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U Zbl0891.05057
- [13] L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3. Zbl0198.29201
- [14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919. Zbl0247.05155
- [15] J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324. Zbl0795.05115
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.