Even [a,b]-factors in graphs

Mekkia Kouider; Preben Dahl Vestergaard

Discussiones Mathematicae Graph Theory (2004)

  • Volume: 24, Issue: 3, page 431-441
  • ISSN: 2083-5892

Abstract

top
Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

How to cite

top

Mekkia Kouider, and Preben Dahl Vestergaard. "Even [a,b]-factors in graphs." Discussiones Mathematicae Graph Theory 24.3 (2004): 431-441. <http://eudml.org/doc/270159>.

@article{MekkiaKouider2004,
abstract = {Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.},
author = {Mekkia Kouider, Preben Dahl Vestergaard},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {even factor; eulerian; spanning subgraph; Eulerian},
language = {eng},
number = {3},
pages = {431-441},
title = {Even [a,b]-factors in graphs},
url = {http://eudml.org/doc/270159},
volume = {24},
year = {2004},
}

TY - JOUR
AU - Mekkia Kouider
AU - Preben Dahl Vestergaard
TI - Even [a,b]-factors in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2004
VL - 24
IS - 3
SP - 431
EP - 441
AB - Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.
LA - eng
KW - even factor; eulerian; spanning subgraph; Eulerian
UR - http://eudml.org/doc/270159
ER -

References

top
  1. [1] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103. Zbl0587.05048
  2. [2] A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935. Zbl0573.05044
  3. [3] Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F. 
  4. [4] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993). 
  5. [5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305. Zbl0661.05049
  6. [6] M. Kano, [a,b] -factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111. 
  7. [7] M. Kano and A. Saito, [a,b] -factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8. 
  8. [8] M. Kano, A sufficient condition for a graph to have [a,b] -factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576. Zbl0746.05051
  9. [9] M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica. 
  10. [10] M. Kouider and M. Maheo, 2 edge-connected [2,k] -factors in graphs, JCMCC 35 (2000) 75-89. 
  11. [11] M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147. Zbl1026.05092
  12. [12] Y. Li and M. Cai, A degree condition for a graph to have [a,b] -factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U Zbl0891.05057
  13. [13] L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3. Zbl0198.29201
  14. [14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919. Zbl0247.05155
  15. [15] J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324. Zbl0795.05115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.