An existence theorem for fractional hybrid differential inclusions of Hadamard type

Bashir Ahmad; Sotiris K. Ntouyas

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2014)

  • Volume: 34, Issue: 2, page 207-218
  • ISSN: 1509-9407

Abstract

top
This paper studies the existence of solutions for fractional hybrid differential inclusions of Hadamard type by using a fixed point theorem due to Dhage. The main result is illustrated with the aid of an example.

How to cite

top

Bashir Ahmad, and Sotiris K. Ntouyas. "An existence theorem for fractional hybrid differential inclusions of Hadamard type." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 34.2 (2014): 207-218. <http://eudml.org/doc/270168>.

@article{BashirAhmad2014,
abstract = {This paper studies the existence of solutions for fractional hybrid differential inclusions of Hadamard type by using a fixed point theorem due to Dhage. The main result is illustrated with the aid of an example.},
author = {Bashir Ahmad, Sotiris K. Ntouyas},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Hadamard fractional derivative; hybrid differential inclusions; Diriclet boundary conditions; existence; fixed point; Dirichlet boundary conditions},
language = {eng},
number = {2},
pages = {207-218},
title = {An existence theorem for fractional hybrid differential inclusions of Hadamard type},
url = {http://eudml.org/doc/270168},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Bashir Ahmad
AU - Sotiris K. Ntouyas
TI - An existence theorem for fractional hybrid differential inclusions of Hadamard type
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2014
VL - 34
IS - 2
SP - 207
EP - 218
AB - This paper studies the existence of solutions for fractional hybrid differential inclusions of Hadamard type by using a fixed point theorem due to Dhage. The main result is illustrated with the aid of an example.
LA - eng
KW - Hadamard fractional derivative; hybrid differential inclusions; Diriclet boundary conditions; existence; fixed point; Dirichlet boundary conditions
UR - http://eudml.org/doc/270168
ER -

References

top
  1. [1] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999). 
  2. [2] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (Elsevier Science B.V., Amsterdam, 2006). 
  3. [3] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (Imperial College Press, 2010). Zbl1210.26004
  4. [4] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004 (Springer-Verlag, Berlin, 2010). Zbl1215.34001
  5. [5] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012). Zbl1248.26011
  6. [6] B. Ahmad and S.K. Ntouyas, Some existence results for boundary value problems for fractional differential inclusions with non-separated boundary conditions, Electron. J. Qual. Theory Differ. Equ. (2010), No. 71, 1-17. Zbl1206.26005
  7. [7] J.R. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl. 12 (2011) 3642-3653. doi: 10.1016/j.nonrwa.2011.06.021 
  8. [8] B. Ahmad, S.K. Ntouyas and A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ. (2011) Art. ID 107384, 11 pp. Zbl1204.34005
  9. [9] J.R. Graef, L. Kong and Q. Kong, Application of the mixed monotone operator method to fractional boundary value problems, Fract. Calc. Differ. Calc. 2 (2011), 554-567. 
  10. [10] B. Ahmad and J.J. Nieto, Sequential fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 64 (2012) 3046-3052. doi: 10.1016/j.camwa.2012.02.036 Zbl1268.34006
  11. [11] R. Sakthivel, N.I. Mahmudov and J.J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput. 218 (2012) 10334-10340. doi: 10.1016/j.amc.2012.03.093 Zbl1245.93022
  12. [12] R.P. Agarwal, D. O'Regan and S. Stanek, Positive solutions for mixed problems of singular fractional differential equations, Math. Nachr. 285 (2012) 27-41. doi: 10.1002/mana.201000043 Zbl1232.26005
  13. [13] G. Wang, B. Ahmad, L. Zhang and R.P. Agarwal, Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, J. Comput. App. Math. 249 (2013) 51-56. doi: 10.1016/j.cam.2013.02.010 Zbl1302.45019
  14. [14] B. Ahmad, S.K. Ntouyas and A. Alsaedi, A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions, Math. Probl. Eng. 2013, Art. ID 320415, 9 pp. Zbl1296.34011
  15. [15] J.J. Nieto, A. Ouahab and P. Prakash, Extremal solutions and relaxation problems for fractional differential inclusions, Abstr. Appl. Anal. 2013, Art. ID 292643, 9 pp. Zbl1293.34012
  16. [16] J.R. Wang, Y. Zhou and W. Wei, Fractional sewage treatment models with impulses at variable times, Appl. Anal. 92 (2013) 1959-1979. doi: 10.1080/00036811.2012.715150 Zbl1279.26021
  17. [17] C. Zhai and M. Hao, Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems, Bound. Value Probl. 85 (2013) 13 pp. Zbl1300.34024
  18. [18] F. Punzo and G. Terrone, On the Cauchy problem for a general fractional porous medium equation with variable density, Nonlinear Anal. 98 (2014) 27-47. doi: 10.1016/j.na.2013.12.007 Zbl1284.35005
  19. [19] G. Wang, B. Ahmad and L. Zhang, Existence of extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett. 31 (2014) 1-6. doi: 10.1016/j.aml.2014.01.004 Zbl1315.34016
  20. [20] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser. 8 (1892) 101-186. 
  21. [21] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002) 387-400. doi: 10.1016/S0022-247X(02)00049-5 Zbl1027.26004
  22. [22] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002) 1-27. doi: 10.1016/S0022-247X(02)00001-X Zbl0995.26007
  23. [23] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002) 1-15. doi: 10.1016/S0022-247X(02)00066-5 Zbl1022.26011
  24. [24] A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001) 1191-1204. Zbl1018.26003
  25. [25] A.A. Kilbas and J.J. Trujillo, Hadamard-type integrals as G-transforms, Integral Transform. Spec. Funct. 14 (2003) 413-427. doi: 10.1080/1065246031000074443 Zbl1043.26004
  26. [26] M. El Borai and M. Abbas, On some integro-differential equations of fractional orders involving Carathéodory nonlinearities, Int. J. Mod. Math. 2 (2007) 41-52. Zbl1152.47060
  27. [27] Y. Zhao, S. Sun, Z. Han and Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl. 62 (2011) 1312-1324. doi: 10.1016/j.camwa.2011.03.041 Zbl1228.45017
  28. [28] S. Sun, Y. Zhao, Z. Han and Y. Li, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4961-4967. doi: 10.1016/j.cnsns.2012.06.001 Zbl06160173
  29. [29] M. Ammi, E. El Kinani and D. Torres, Existence and uniqueness of solutions to functional integro-differential fractional equations, Electron. J. Differ. Eq. 2012 (103) (2012) 1-9. Zbl1253.26005
  30. [30] B.C. Dhage and S.K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclucions, Topol. Methods Nonlinar Anal. 44 (2014) 229-238. 
  31. [31] B. Ahmad and S.K. Ntouyas, Initial value problems for hybrid Hadamard fractional differential equations, Electron. J. Differ. Eq. 2014 (161) (2014) 1-8. 
  32. [32] G.A. Anastassiou, Fractional Differentiation Inequalities (Springer Publishing Company, New York, 2009). doi: 10.1007/978-0-387-98128-4 
  33. [33] K. Deimling, Multivalued Differential Equations, Walter De Gruyter (Berlin-New York, 1992). doi: 10.1515/9783110874228 Zbl0760.34002
  34. [34] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I (Kluwer, Dordrecht, 1997). doi: 10.1007/978-1-4615-6359-4 
  35. [35] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965) 781-786. Zbl0151.10703
  36. [36] B. Dhage, Existence results for neutral functional differential inclusions in Banach algebras, Nonlinear Anal. 64 (2006) 1290-1306. doi: 10.1016/j.na.2005.06.036 Zbl1105.34051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.