Existence and attractivity for fractional order integral equations in Fréchet spaces
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2013)
- Volume: 33, Issue: 1, page 47-63
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topSaïd Abbas, and Mouffak Benchohra. "Existence and attractivity for fractional order integral equations in Fréchet spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 33.1 (2013): 47-63. <http://eudml.org/doc/270181>.
@article{SaïdAbbas2013,
abstract = {In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.},
author = {Saïd Abbas, Mouffak Benchohra},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {functional integral equation; left-sided mixed Riemann-Liouville integral of fractional order; solution; attractivity; Fréchet space; fixed point},
language = {eng},
number = {1},
pages = {47-63},
title = {Existence and attractivity for fractional order integral equations in Fréchet spaces},
url = {http://eudml.org/doc/270181},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Saïd Abbas
AU - Mouffak Benchohra
TI - Existence and attractivity for fractional order integral equations in Fréchet spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2013
VL - 33
IS - 1
SP - 47
EP - 63
AB - In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.
LA - eng
KW - functional integral equation; left-sided mixed Riemann-Liouville integral of fractional order; solution; attractivity; Fréchet space; fixed point
UR - http://eudml.org/doc/270181
ER -
References
top- [1] S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ. 2012 (2012), 62. doi: 10.1186/1687-1847-2012-62 Zbl1302.35392
- [2] S. Abbas and M. Benchohra, Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum 17 (2012), 1-9. Zbl1293.26008
- [3] S. Abbas and M. Benchohra, On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math. 52 (1) (2012), 91-100. Zbl1292.26015
- [4] S. Abbas, M. Benchohra and J.R. Graef, Integro-differential equations of fractional order, Differ. Equ. Dyn. Syst. 20 (2) (2012), 139-148. doi: 10.1007/s12591-012-0110-1 Zbl1266.45011
- [5] S. Abbas, M. Benchohra and J. Henderson, On global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal. 19 (2012), 79-89. Zbl1269.26003
- [6] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9
- [7] S. Abbas, M. Benchohra and A.N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168-182. Zbl1302.35395
- [8] C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ. 5 (2003), 1-15.
- [9] C. Avramescu and C. Vladimirescu, An existence result of asymptotically stable solutions for an integral equation of mixed type, Electron. J. Qual. Theory Differ. Equ. 25 (2005), 1-6. Zbl1104.47063
- [10] C. Avramescu and C. Vladimirescu, On the existence of asymptotically stable solutions of certain integral equations, Nonlinear Anal. 66 (2) (2007), 472-483. doi: 10.1016/j.na.2005.11.041 Zbl1110.45004
- [11] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. Zbl1248.26011
- [12] J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (7) (2008), 1945-1952. doi: 10.1016/j.na.2007.07.038 Zbl1154.45005
- [13] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. doi: 10.1016/S0022-247X(03)00300-7 Zbl1029.45003
- [14] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037 Zbl1181.45010
- [15] J. Banaś and T. Zając, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375-387. doi: 10.1016/j.jmaa.2010.09.004 Zbl1210.45005
- [16] M.A. Darwish, J. Henderson, and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553. doi: 10.4134/BKMS.2011.48.3.539 Zbl1220.45011
- [17] B.C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equations, Nonlinear Anal. 70 (2009), 1912-1922. doi: 10.1016/j.na.2008.02.109 Zbl1173.47056
- [18] B.C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal. 70 (2009), 2485-2493. doi: 10.1016/j.na.2008.03.033 Zbl1163.45005
- [19] B.C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness, Differ. Equ. Appl. 2 (3) (2010), 299-318. Zbl1201.45007
- [20] M. Frigon and A. Granas, Théorèmes d'existence pour des inclusions différentielles sans convexité, C.R. Acad. Sci. Paris, Ser. I 310 (1990), 819-822.
- [21] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003
- [22] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. Zbl1188.37002
- [23] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. Zbl0789.26002
- [24] B.G. Pachpatte, On Volterra-Fredholm integral equation in two variables, Demonstratio Math. XL (4) (2007), 839-852. Zbl1186.45010
- [25] B.G. Pachpatte, On Fredholm type integral equation in two variables, Differ. Equ. Appl. 1 (2009), 27-39. Zbl1170.45003
- [26] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
- [27] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- [28] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325. doi: 10.1007/s11072-005-0015-9 Zbl1092.35500
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.