Existence and attractivity for fractional order integral equations in Fréchet spaces

Saïd Abbas; Mouffak Benchohra

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2013)

  • Volume: 33, Issue: 1, page 47-63
  • ISSN: 1509-9407

Abstract

top
In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.

How to cite

top

Saïd Abbas, and Mouffak Benchohra. "Existence and attractivity for fractional order integral equations in Fréchet spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 33.1 (2013): 47-63. <http://eudml.org/doc/270181>.

@article{SaïdAbbas2013,
abstract = {In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.},
author = {Saïd Abbas, Mouffak Benchohra},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {functional integral equation; left-sided mixed Riemann-Liouville integral of fractional order; solution; attractivity; Fréchet space; fixed point},
language = {eng},
number = {1},
pages = {47-63},
title = {Existence and attractivity for fractional order integral equations in Fréchet spaces},
url = {http://eudml.org/doc/270181},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Saïd Abbas
AU - Mouffak Benchohra
TI - Existence and attractivity for fractional order integral equations in Fréchet spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2013
VL - 33
IS - 1
SP - 47
EP - 63
AB - In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.
LA - eng
KW - functional integral equation; left-sided mixed Riemann-Liouville integral of fractional order; solution; attractivity; Fréchet space; fixed point
UR - http://eudml.org/doc/270181
ER -

References

top
  1. [1] S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ. 2012 (2012), 62. doi: 10.1186/1687-1847-2012-62 Zbl1302.35392
  2. [2] S. Abbas and M. Benchohra, Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum 17 (2012), 1-9. Zbl1293.26008
  3. [3] S. Abbas and M. Benchohra, On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math. 52 (1) (2012), 91-100. Zbl1292.26015
  4. [4] S. Abbas, M. Benchohra and J.R. Graef, Integro-differential equations of fractional order, Differ. Equ. Dyn. Syst. 20 (2) (2012), 139-148. doi: 10.1007/s12591-012-0110-1 Zbl1266.45011
  5. [5] S. Abbas, M. Benchohra and J. Henderson, On global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal. 19 (2012), 79-89. Zbl1269.26003
  6. [6] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9 
  7. [7] S. Abbas, M. Benchohra and A.N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168-182. Zbl1302.35395
  8. [8] C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ. 5 (2003), 1-15. 
  9. [9] C. Avramescu and C. Vladimirescu, An existence result of asymptotically stable solutions for an integral equation of mixed type, Electron. J. Qual. Theory Differ. Equ. 25 (2005), 1-6. Zbl1104.47063
  10. [10] C. Avramescu and C. Vladimirescu, On the existence of asymptotically stable solutions of certain integral equations, Nonlinear Anal. 66 (2) (2007), 472-483. doi: 10.1016/j.na.2005.11.041 Zbl1110.45004
  11. [11] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. Zbl1248.26011
  12. [12] J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (7) (2008), 1945-1952. doi: 10.1016/j.na.2007.07.038 Zbl1154.45005
  13. [13] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. doi: 10.1016/S0022-247X(03)00300-7 Zbl1029.45003
  14. [14] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037 Zbl1181.45010
  15. [15] J. Banaś and T. Zając, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375-387. doi: 10.1016/j.jmaa.2010.09.004 Zbl1210.45005
  16. [16] M.A. Darwish, J. Henderson, and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553. doi: 10.4134/BKMS.2011.48.3.539 Zbl1220.45011
  17. [17] B.C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equations, Nonlinear Anal. 70 (2009), 1912-1922. doi: 10.1016/j.na.2008.02.109 Zbl1173.47056
  18. [18] B.C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal. 70 (2009), 2485-2493. doi: 10.1016/j.na.2008.03.033 Zbl1163.45005
  19. [19] B.C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness, Differ. Equ. Appl. 2 (3) (2010), 299-318. Zbl1201.45007
  20. [20] M. Frigon and A. Granas, Théorèmes d'existence pour des inclusions différentielles sans convexité, C.R. Acad. Sci. Paris, Ser. I 310 (1990), 819-822. 
  21. [21] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003
  22. [22] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. Zbl1188.37002
  23. [23] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. Zbl0789.26002
  24. [24] B.G. Pachpatte, On Volterra-Fredholm integral equation in two variables, Demonstratio Math. XL (4) (2007), 839-852. Zbl1186.45010
  25. [25] B.G. Pachpatte, On Fredholm type integral equation in two variables, Differ. Equ. Appl. 1 (2009), 27-39. Zbl1170.45003
  26. [26] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999. 
  27. [27] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. 
  28. [28] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325. doi: 10.1007/s11072-005-0015-9 Zbl1092.35500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.