Fractional -difference equations on the half line
Saïd Abbas; Mouffak Benchohra; Nadjet Laledj; Yong Zhou
Archivum Mathematicum (2020)
- Volume: 056, Issue: 4, page 207-223
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAbbas, Saïd, et al. "Fractional ${q}$-difference equations on the half line." Archivum Mathematicum 056.4 (2020): 207-223. <http://eudml.org/doc/297403>.
@article{Abbas2020,
abstract = {This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional $\{q\}$-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.},
author = {Abbas, Saïd, Benchohra, Mouffak, Laledj, Nadjet, Zhou, Yong},
journal = {Archivum Mathematicum},
keywords = {fractional $q$-difference equation; attractivity; diagonalization; bounded solution; Banach space; Fréchet space; fixed point},
language = {eng},
number = {4},
pages = {207-223},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fractional $\{q\}$-difference equations on the half line},
url = {http://eudml.org/doc/297403},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Abbas, Saïd
AU - Benchohra, Mouffak
AU - Laledj, Nadjet
AU - Zhou, Yong
TI - Fractional ${q}$-difference equations on the half line
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 4
SP - 207
EP - 223
AB - This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional ${q}$-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.
LA - eng
KW - fractional $q$-difference equation; attractivity; diagonalization; bounded solution; Banach space; Fréchet space; fixed point
UR - http://eudml.org/doc/297403
ER -
References
top- Abbas, S., Benchohra, M., On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math. 52 (1) (2012), 91–100. (2012) MR2977716
- Abbas, S., Benchohra, M., 10.7151/dmdico.1141, Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1–17. (2013) MR3136582DOI10.7151/dmdico.1141
- Abbas, S., Benchohra, M., Diagana, T., Existence and attractivity results for some fractional order partial integro-differential equations with delay, Afr. Diaspora J. Math. 15 (2) (2013), 87–100. (2013) MR3161669
- Abbas, S., Benchohra, M., Graef, J.R., Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018. (2018) MR3791511
- Abbas, S., Benchohra, M., Henderson, J., Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlinear Stud. 20 (1) (2013), 1–10. (2013) MR3058403
- Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) MR2962045
- Abbas, S., Benchohra, M., N’Guérékata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. (2015) Zbl1314.34002MR3309582
- Adams, C.R., 10.2307/1968274, Annals Math. 30 (1928), 195–205. (1928) MR1502876DOI10.2307/1968274
- Agarwal, R., Certain fractional - integrals and -derivatives, Proc. Cambridge Philos. Soc. 66 (1969), 365–370. (1969) MR0247389
- Ahmad, B., Boundary value problem for nonlinear third order -difference equations, Electron. J. Differential Equations 2011 (94) (2011), 1–7. (2011) MR2832270
- Ahmad, B., Ntouyas, S.K., Purnaras, L.K., Existence results for nonlocal boundary value problems of nonlinear fractional -difference equations, Adv. Difference Equ. 2012 (2012), 14 pp. (2012) MR3016054
- Almezel, S., Ansari, Q.H., Khamsi, M.A., Topics in Fixed Point Theory, Springer-Verlag, New York, 2014. (2014) MR3411798
- Benchohra, M., Berhoun, F., N’Guérékata, G.M., Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl. 146 (4) (2012), 62–71. (2012) MR2955875
- Bothe, D., 10.1007/BF02783044, Israel J. Math. 108 (1998), 109–138. (1998) MR1669396DOI10.1007/BF02783044
- Carmichael, R.D., 10.2307/2369887, American J. Math. 34 (1912), 147–168. (1912) MR1506145DOI10.2307/2369887
- Corduneanu, C., Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973. (1973) Zbl0273.45001MR0358245
- Dudek, S., 10.2298/AADM1702340D, Appl. Anal. Discrete Math. 11 (2017), 340–357. (2017) MR3719830DOI10.2298/AADM1702340D
- Dudek, S., Olszowy, L., Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces (2015), 9 pp., Article ID 471235. (2015) MR3319202
- El-Shahed, M., Hassa, H.A., 10.1090/S0002-9939-09-10185-5, Proc. Amer. Math. Soc. 138 (2010), 1733–1738. (2010) MR2587458DOI10.1090/S0002-9939-09-10185-5
- Etemad, S., Ntouyas, S.K., Ahmad, B., 10.3390/math7080659, Mathematics 7 (2019), 1–15. (2019) DOI10.3390/math7080659
- Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179
- Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002. (2002) Zbl0986.05001MR1865777
- Kilbas, A.A., Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (6) (2001), 1191–1204. (2001) MR1858760
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Mönch, H., 10.1016/0362-546X(80)90010-3, Nonlinear Anal. 4 (1980), 985–999. (1980) MR0586861DOI10.1016/0362-546X(80)90010-3
- Olszowy, L., 10.1016/j.na.2012.11.001, Nonlinear Anal. 81 (2013), 211–223. (2013) MR3016450DOI10.1016/j.na.2012.11.001
- Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., 10.2298/AADM0701311R, Appl. Anal. Discrete Math. 1 (2007), 311–323. (2007) MR2316607DOI10.2298/AADM0701311R
- Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., On -analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal. 10 (2007), 359–373. (2007) MR2378985
- Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. (1987) MR1347689
- Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. (2010) MR2796453
- Tenreiro Machado, J.A., Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal. 20 (2017), 307–336. (2017) MR3657873
- Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. (2014) MR3287248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.