Some properties of the zero divisor graph of a commutative ring

Khalida Nazzal; Manal Ghanem

Discussiones Mathematicae - General Algebra and Applications (2014)

  • Volume: 34, Issue: 2, page 167-181
  • ISSN: 1509-9415

Abstract

top
Let Γ(R) be the zero divisor graph for a commutative ring with identity. The k-domination number and the 2-packing number of Γ(R), where R is an Artinian ring, are computed. k-dominating sets and 2-packing sets for the zero divisor graph of the ring of Gaussian integers modulo n, Γ(ℤₙ[i]), are constructed. The center, the median, the core, as well as the automorphism group of Γ(ℤₙ[i]) are determined. Perfect zero divisor graphs Γ(R) are investigated.

How to cite

top

Khalida Nazzal, and Manal Ghanem. "Some properties of the zero divisor graph of a commutative ring." Discussiones Mathematicae - General Algebra and Applications 34.2 (2014): 167-181. <http://eudml.org/doc/270207>.

@article{KhalidaNazzal2014,
abstract = {Let Γ(R) be the zero divisor graph for a commutative ring with identity. The k-domination number and the 2-packing number of Γ(R), where R is an Artinian ring, are computed. k-dominating sets and 2-packing sets for the zero divisor graph of the ring of Gaussian integers modulo n, Γ(ℤₙ[i]), are constructed. The center, the median, the core, as well as the automorphism group of Γ(ℤₙ[i]) are determined. Perfect zero divisor graphs Γ(R) are investigated.},
author = {Khalida Nazzal, Manal Ghanem},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {automorphism group of a graph; center of a graph; core of a graph; k-domination number; Gaussian integers modulo n; median of a graph; 2-packing; perfect graph; and zero divisor graph; zero divisor graphs of commutative rings},
language = {eng},
number = {2},
pages = {167-181},
title = {Some properties of the zero divisor graph of a commutative ring},
url = {http://eudml.org/doc/270207},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Khalida Nazzal
AU - Manal Ghanem
TI - Some properties of the zero divisor graph of a commutative ring
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2014
VL - 34
IS - 2
SP - 167
EP - 181
AB - Let Γ(R) be the zero divisor graph for a commutative ring with identity. The k-domination number and the 2-packing number of Γ(R), where R is an Artinian ring, are computed. k-dominating sets and 2-packing sets for the zero divisor graph of the ring of Gaussian integers modulo n, Γ(ℤₙ[i]), are constructed. The center, the median, the core, as well as the automorphism group of Γ(ℤₙ[i]) are determined. Perfect zero divisor graphs Γ(R) are investigated.
LA - eng
KW - automorphism group of a graph; center of a graph; core of a graph; k-domination number; Gaussian integers modulo n; median of a graph; 2-packing; perfect graph; and zero divisor graph; zero divisor graphs of commutative rings
UR - http://eudml.org/doc/270207
ER -

References

top
  1. [1] E. Abu Osba, The Complement graph for Gaussian integers modulo n, Commun. Algebra 40 (5), (2012) 1886-1892. doi: 10.1080/00927872.2011.560588 Zbl1246.13006
  2. [2] E. Abu Osba, S. Al-Addasi and N. Abu Jaradeh, Zero divisor graph for the ring of Gaussian integers modulo n, Commun. Algebra 36 (10) (2008) 3865-3877. doi: 10.1080/00927870802160859 Zbl1151.05042
  3. [3] E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero divisor graph for the ring of Gaussian integers modulo n, Glasgow J. Math. 53 (1) (2011) 391-399. doi: 10.1017/S0017089511000024 Zbl1213.13019
  4. [4] S. Akbari and A. Mohamamadaian, On the zero divisor graph of a commutative ring, J. Algebra 274 (2004) 847-855. doi: 10.1016/S0021-8693(03)00435-6 Zbl1085.13011
  5. [5] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra in Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York (2011), 2345. Zbl1225.13002
  6. [6] D.F. Anderson and A.D. Badawi, On the zero-divisor graph of a ring, Commun. Algebra 36 (2008) 3073-3092. doi: 10.1080/0092787080211088 Zbl1152.13001
  7. [7] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero divisor graph of a commutative ring II, Lecture notes in Pure and Appl. Math., New Yourk, Marcel Dekker 220 (2001) 61-72. Zbl1035.13004
  8. [8] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840 Zbl0941.05062
  9. [9] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math. 2 (2) (1998) 173-179. Zbl0906.05032
  10. [10] V.K. Bahat and R. Raina, A note on zero divisor graph over rings, Int. J. Contemp. Math. Sci. 14 (2) (2007) 667-671. Zbl1138.16304
  11. [11] J. Beck, Coloring of Commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5 
  12. [12] C. Berge, Fäbung von Graphen, deren s Fäamtliche bzw. Deren ungerade Kreise starr sind, Wiss, Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961) 114-115. 
  13. [13] G. Chartrand and L. Leśniak, Graphs and Digraphs, 2 ed., Wadsworth and Brooks (Monterey, California, 1986). 
  14. [14] H. Chiang-Hsieh, H. Wang and N. Smith, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (1) (2010) 1-31. Zbl1226.05095
  15. [15] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (1) (2006) 51-229. doi: 10.4007/annals.2006.164.51 Zbl1112.05042
  16. [16] N. Cordova, C. Gholston and H. Hauser, The Structure of Zero-divisor Graphs (Sumsri, Miami University, 2005). 
  17. [17] M. El-Zahar and C. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227. 
  18. [18] M. Ghanem and K. Nazzal, On the line graph of the complement graph for the ring of Gaussian integers modulo n, Open J. Disc. Math. 2 (1) (2012) 24-34. Zbl1242.05155
  19. [19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
  20. [20] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc. (New York, 1998). Zbl0883.00011
  21. [21] R.B. Hayward, Murky graphs, J. Combin. Theory (B) 49 (1990) 200-235. Zbl0643.05054
  22. [22] Ph.S. Livingston, Structure in Zero-Divisor Graphs of Commutative Rings, Masters Theses, University of Tennessee (Knoxville, 1997). 
  23. [23] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Disc. Math. 2 (1972) 253-267. Zbl0239.05111
  24. [24] T.F. Maire, Slightly triangulated graphs are perfect, Graphs Combin. 10 (1994) 263-268. Zbl0814.05035
  25. [25] K. Nazzal and M. Ghanem, On the line graph of the zero divisor graph for the ring of Gaussian integers modulo n, Int. J. Comb. (2012) 13 pages. Zbl1236.05105
  26. [26] S.P. Redmond, Central sets and Radii of the zero divisor graphs of commutative ring, Commun. Algebra 34 (2006) 2389-2401. Zbl1105.13007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.