The Ramsey number r(C₇,C₇,C₇)

Ralph Faudree; Annette Schelten; Ingo Schiermeyer

Discussiones Mathematicae Graph Theory (2003)

  • Volume: 23, Issue: 1, page 141-158
  • ISSN: 2083-5892

Abstract

top
Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.

How to cite

top

Ralph Faudree, Annette Schelten, and Ingo Schiermeyer. "The Ramsey number r(C₇,C₇,C₇)." Discussiones Mathematicae Graph Theory 23.1 (2003): 141-158. <http://eudml.org/doc/270210>.

@article{RalphFaudree2003,
abstract = {Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.},
author = {Ralph Faudree, Annette Schelten, Ingo Schiermeyer},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Ramsey numbers; extremal graphs; multicolor Ramsey numbers; cycles},
language = {eng},
number = {1},
pages = {141-158},
title = {The Ramsey number r(C₇,C₇,C₇)},
url = {http://eudml.org/doc/270210},
volume = {23},
year = {2003},
}

TY - JOUR
AU - Ralph Faudree
AU - Annette Schelten
AU - Ingo Schiermeyer
TI - The Ramsey number r(C₇,C₇,C₇)
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 1
SP - 141
EP - 158
AB - Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
LA - eng
KW - Ramsey numbers; extremal graphs; multicolor Ramsey numbers; cycles
UR - http://eudml.org/doc/270210
ER -

References

top
  1. [1] A. Bialostocki and J. Schönheim, On Some Turan and Ramsey Numbers for C₄, Graph Theory and Combinatorics, Academic Press, London, (1984) 29-33. Zbl0554.05036
  2. [2] J.A. Bondy and P. Erdős, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54. Zbl0248.05127
  3. [3] S. Brandt, A Sufficient Condition for all Short Cycles, Discrete Applied Math. 79 (1997) 63-66. Zbl0882.05081
  4. [4] S. Brandt and H.J. Veldman, Degree sums for edges and cycle lengths in graphs, J. Graph Theory 25 (1997) 253-256. Zbl0876.05056
  5. [5] V. Chvátal, On Hamiltonian's Ideals, J. Combin. Theory (B) 12 (1972) 163-168. 
  6. [6] C. Clapham, The Ramsey Number r(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318. 
  7. [7] P. Erdős, On the Combinatorial Problems which I would most Like to See Solved, Combinatorica 1 (1981) 25-42. Zbl0486.05001
  8. [8] R.J. Faudree and R.H. Schelp, All Ramsey Numbers for Cycles in Graphs, Discrete Math. 8 (1974) 313-329. Zbl0294.05122
  9. [9] R.E. Greenwood and A.M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian J. Math. 7 (1995) 1-7. Zbl0064.17901
  10. [10] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187. 
  11. [11] S.P. Radziszowski, Small Ramsey Numbers, Electronic J. Combin. 1 (1994) update 2001. 
  12. [12] A. Schelten, Bestimmung von Ramsey-Zahlen zweier und dreier Graphen (Dissertation, TU Bergakademie Freiberg, 2000). 
  13. [13] P. Rowlinson amd Yang Yuangsheng, On the Third Ramsey Numbers of Graphs with Five Edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222. Zbl0756.05078
  14. [14] P. Rowlinson and Yang Yuangsheng, On Graphs without 6-Cycles and Related Ramsey Numbers, Utilitas Mathematica 44 (1993) 192-196. Zbl0789.05070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.