The Ramsey number r(C₇,C₇,C₇)
Ralph Faudree; Annette Schelten; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 1, page 141-158
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topRalph Faudree, Annette Schelten, and Ingo Schiermeyer. "The Ramsey number r(C₇,C₇,C₇)." Discussiones Mathematicae Graph Theory 23.1 (2003): 141-158. <http://eudml.org/doc/270210>.
@article{RalphFaudree2003,
abstract = {Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.},
author = {Ralph Faudree, Annette Schelten, Ingo Schiermeyer},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Ramsey numbers; extremal graphs; multicolor Ramsey numbers; cycles},
language = {eng},
number = {1},
pages = {141-158},
title = {The Ramsey number r(C₇,C₇,C₇)},
url = {http://eudml.org/doc/270210},
volume = {23},
year = {2003},
}
TY - JOUR
AU - Ralph Faudree
AU - Annette Schelten
AU - Ingo Schiermeyer
TI - The Ramsey number r(C₇,C₇,C₇)
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 1
SP - 141
EP - 158
AB - Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
LA - eng
KW - Ramsey numbers; extremal graphs; multicolor Ramsey numbers; cycles
UR - http://eudml.org/doc/270210
ER -
References
top- [1] A. Bialostocki and J. Schönheim, On Some Turan and Ramsey Numbers for C₄, Graph Theory and Combinatorics, Academic Press, London, (1984) 29-33. Zbl0554.05036
- [2] J.A. Bondy and P. Erdős, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54. Zbl0248.05127
- [3] S. Brandt, A Sufficient Condition for all Short Cycles, Discrete Applied Math. 79 (1997) 63-66. Zbl0882.05081
- [4] S. Brandt and H.J. Veldman, Degree sums for edges and cycle lengths in graphs, J. Graph Theory 25 (1997) 253-256. Zbl0876.05056
- [5] V. Chvátal, On Hamiltonian's Ideals, J. Combin. Theory (B) 12 (1972) 163-168.
- [6] C. Clapham, The Ramsey Number r(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318.
- [7] P. Erdős, On the Combinatorial Problems which I would most Like to See Solved, Combinatorica 1 (1981) 25-42. Zbl0486.05001
- [8] R.J. Faudree and R.H. Schelp, All Ramsey Numbers for Cycles in Graphs, Discrete Math. 8 (1974) 313-329. Zbl0294.05122
- [9] R.E. Greenwood and A.M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian J. Math. 7 (1995) 1-7. Zbl0064.17901
- [10] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187.
- [11] S.P. Radziszowski, Small Ramsey Numbers, Electronic J. Combin. 1 (1994) update 2001.
- [12] A. Schelten, Bestimmung von Ramsey-Zahlen zweier und dreier Graphen (Dissertation, TU Bergakademie Freiberg, 2000).
- [13] P. Rowlinson amd Yang Yuangsheng, On the Third Ramsey Numbers of Graphs with Five Edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222. Zbl0756.05078
- [14] P. Rowlinson and Yang Yuangsheng, On Graphs without 6-Cycles and Related Ramsey Numbers, Utilitas Mathematica 44 (1993) 192-196. Zbl0789.05070
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.