Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups
Discussiones Mathematicae Graph Theory (2006)
- Volume: 26, Issue: 3, page 359-368
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, J. Algebraic Combin. 5 (1996) 83-86, doi: 10.1023/A:1022456615990. Zbl0849.05034
- [2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974). Zbl0284.05101
- [3] Y.G. Baik, Y.Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, System Science and Mathematical Science 13 (2000) 420-431. Zbl0973.05038
- [4] J.L. Berggren, An algebraic characterization of symmetric graph with p point, Bull. Aus. Math. Soc. 158 (1971) 247-256.
- [5] C.Y. Chao, On the classification of symmetric graph with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256, doi: 10.1090/S0002-9947-1971-0279000-7. Zbl0217.02403
- [6] C.Y. Chao and J. G. Wells, A class of vertex-transitive digraphs, J. Combin. Theory (B) 14 (1973) 246-255, doi: 10.1016/0095-8956(73)90007-5. Zbl0245.05109
- [7] J.D. Dixon and B. Mortimer, Permutation Groups (Springer-Verlag, 1996). Zbl0951.20001
- [8] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256, doi: 10.1007/BF02579330. Zbl0489.05028
- [9] C.D. Godsil and G. Royle, Algebric Graph Theory (Springer-Verlag, 2001).
- [10] H. Wielandt, Finite Permutation Group (Academic Press, New York, 1964). Zbl0138.02501
- [11] Ming-Yao Xu and Jing Xu, Arc-transitive Cayley graph of valency at most four on Abelian Groups, Southest Asian Bull. Math. 25 (2001) 355-363, doi: 10.1007/s10012-001-0355-z. Zbl0993.05086
- [12] Ming-Yao Xu, A note on one-regular graphs of valency four, Chinese Science Bull. 45 (2000) 2160-2162.
- [13] Ming-Yao Xu, Hyo-Seob Sim and Youg-Gheel Baik, Arc-transitive circulant digraphs of odd prime-power order, (summitted). Zbl1050.05064
- [14] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319, doi: 10.1016/S0012-365X(97)00152-0. Zbl0887.05025