Edge colorings and total colorings of integer distance graphs
Arnfried Kemnitz; Massimiliano Marangio
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 1, page 149-158
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topArnfried Kemnitz, and Massimiliano Marangio. "Edge colorings and total colorings of integer distance graphs." Discussiones Mathematicae Graph Theory 22.1 (2002): 149-158. <http://eudml.org/doc/270272>.
@article{ArnfriedKemnitz2002,
abstract = {An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.},
author = {Arnfried Kemnitz, Massimiliano Marangio},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {integer distance graph; chromatic number; choice number; chromatic index; choice index; total chromatic number; total choice number},
language = {eng},
number = {1},
pages = {149-158},
title = {Edge colorings and total colorings of integer distance graphs},
url = {http://eudml.org/doc/270272},
volume = {22},
year = {2002},
}
TY - JOUR
AU - Arnfried Kemnitz
AU - Massimiliano Marangio
TI - Edge colorings and total colorings of integer distance graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 1
SP - 149
EP - 158
AB - An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.
LA - eng
KW - integer distance graph; chromatic number; choice number; chromatic index; choice index; total chromatic number; total choice number
UR - http://eudml.org/doc/270272
ER -
References
top- [1] M. Behzad, Graphs and their chromatic numbers (Doct. Thesis, Michigan State University, 1965).
- [2] B. Bollobás and A.J. Harris, List-colourings of graphs, Graphs and Combinatorics 1 (1985) 115-127, doi: 10.1007/BF02582936. Zbl0606.05027
- [3] O.V. Borodin, A.V. Kostochka, and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. Zbl0876.05032
- [4] G.J. Chang, J.-J. Chen, and K.-Ch. Huang, Integral distance graphs, J. Graph Theory 25 (1997) 287-294, doi: 10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.0.CO;2-G Zbl0878.05028
- [5] R.B. Eggleton, Three unsolved problems in graph theory, Ars Combin. 23A (1987) 105-121. Zbl0634.05062
- [6] R.B. Eggleton, P. Erdős and D.K. Skilton, Colouring the real line, J. Combin. Theory (B) 39 (1985) 86-100, Erratum: 41 (1986), 139. Zbl0549.05029
- [7] R.B. Eggleton, P. Erdős and D.K. Skilton, Colouring prime distance graphs, Graphs and Combinatorics 6 (1990) 17-32, doi: 10.1007/BF01787476. Zbl0698.05033
- [8] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congressus Numerantium 26 (1979) 125-157.
- [9] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory (B) 63 (1995) 153-158, doi: 10.1006/jctb.1995.1011. Zbl0826.05026
- [10] A. Hackmann and A. Kemnitz, List edge colorings of outerplanar graphs, Ars Combin. (to appear).
- [11] R. Häggkvist and J.C.M. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Research report 19, Department of Mathematics (University of Ulmeå, 1993). Zbl0880.05035
- [12] A.J. Harris, Problems and conjectures in extremal graph theory (Ph.D. Dissertation, Cambridge Univerity, 1985).
- [13] A.J.W. Hilton and H.R. Hind, Total chromatic number of graphs having large maximum degree, Discrete Math. 117 (1993) 127-140, doi: 10.1016/0012-365X(93)90329-R. Zbl0785.05035
- [14] T.R. Jensen and Bjarne Toft, Graph coloring problems (Wiley, New York, 1995). Zbl0855.05054
- [15] M. Juvan and B. Mohar, List colorings of outerplanar graphs (Manuscript, 1998). Zbl0957.05044
- [16] M. Juvan, B. Mohar and R. Skrekovski, List-total colourings of graphs, Combinatorics, Probability and Computing 7 (1998) 181-188, doi: 10.1017/S0963548397003210. Zbl0911.05033
- [17] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998) 113-123, doi: 10.1016/S0012-365X(98)00099-5. Zbl0956.05044
- [18] A. Kemnitz and M. Marangio, Chromatic numbers of integer distance graphs, Discrete Math. (to appear). Zbl0988.05039
- [19] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199-214, doi: 10.1016/0012-365X(95)00286-6. Zbl0871.05023
- [20] D.P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73, doi: 10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C Zbl0922.05025
- [21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25-30 (Russian).
- [22] M. Voigt, Colouring of distance graphs, Ars Combin. 52 (1999) 3-12. Zbl0977.05047
- [23] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math. 51 (1994) 197-209, doi: 10.1016/0166-218X(94)90109-0. Zbl0808.05051
- [24] H. Walther, Über eine spezielle Klasse unendlicher Graphen, Graphentheorie II (Klaus Wagner and Rainer Bodendiek, eds.), Bibliographisches Institut Wissenschaftsverlag, 1990, pp. 268-295 (German).
- [25] X. Zhu, Distance graphs on the real line (Manuscript, 1996).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.