The exocenter and type decomposition of a generalized pseudoeffect algebra
David J. Foulis; Silvia Pulmannová; Elena Vinceková
Discussiones Mathematicae - General Algebra and Applications (2013)
- Volume: 33, Issue: 1, page 13-47
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topDavid J. Foulis, Silvia Pulmannová, and Elena Vinceková. "The exocenter and type decomposition of a generalized pseudoeffect algebra." Discussiones Mathematicae - General Algebra and Applications 33.1 (2013): 13-47. <http://eudml.org/doc/270278>.
@article{DavidJ2013,
abstract = {We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.},
author = {David J. Foulis, Silvia Pulmannová, Elena Vinceková},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudoeffect algebra; generalized pseudoeffect algebra; center; exocenter; central orthocompleteness; type determining set; type decomposition; effect algebra; generalized effect algebra; orthosummable family; boolean algebra; hull system; exocentral cover; von Neumann algebra; types I/II/III.},
language = {eng},
number = {1},
pages = {13-47},
title = {The exocenter and type decomposition of a generalized pseudoeffect algebra},
url = {http://eudml.org/doc/270278},
volume = {33},
year = {2013},
}
TY - JOUR
AU - David J. Foulis
AU - Silvia Pulmannová
AU - Elena Vinceková
TI - The exocenter and type decomposition of a generalized pseudoeffect algebra
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2013
VL - 33
IS - 1
SP - 13
EP - 47
AB - We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.
LA - eng
KW - pseudoeffect algebra; generalized pseudoeffect algebra; center; exocenter; central orthocompleteness; type determining set; type decomposition; effect algebra; generalized effect algebra; orthosummable family; boolean algebra; hull system; exocentral cover; von Neumann algebra; types I/II/III.
UR - http://eudml.org/doc/270278
ER -
References
top- [1] P. Bush, P. Lahti and P. Mittelstaedt, The Quantum Theory of Measurement (Lecture Notes in Physics, Springer, Berlin-Heidelberg-New York, 1991).
- [2] J.C Carrega, G. Chevalier and R. Mayet, Direct decomposition of orthomodular lattices, Alg. Univers. 27 (1990) 480-496. doi: 10.1007/DF01188994. Zbl0715.06006
- [3] A. Dvurečenskij, Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras, J. Aust. Math. Soc. 74 (2003) 121-143. Zbl1033.03036
- [4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures (Kluwer, Dordrecht, 2000). Zbl0987.81005
- [5] A. Dvurečenskij and T. Vetterlein, Pseudoeffect algebras I. Basic properties, Int. J. Theor. Phys. 40 (2001) 685-701. doi: 10.1023/A:1004192715509. Zbl0994.81008
- [6] A. Dvurečenskij and T. Vetterlein, Pseudoeffect algebras II. Group representations, Int. J. Theor. Phys. 40 (2001) 703-726. doi: 10.1023/A:1004144832348. Zbl0994.81009
- [7] A. Dvurečenskij and T. Vetterlein, Algebras in the positive cone of po-groups, Order 19 (2002) 127-146. doi: 10.1023A:1016551707-476. Zbl1012.03064
- [8] A. Dvurečenskij and T. Vetterlein, Generalized pseudo-effect algebras, in: Lectures on Soft Computing and Fuzzy Logic; Adv. Soft Comput, (Ed(s)), (Physica, Heidelberg, 2001) 89-111. Zbl1012.03063
- [9] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994) 1331-1352. doi: 10.1007/BF02283036. Zbl1213.06004
- [10] D.J. Foulis and S. Pulmannová, Type-decomposition of an effect algebra, Found. Phys. 40 (2010) 1543-1565. doi: 10.1007/s10701-009-9344-3.
- [11] D.J Foulis and S. Pulmannová, Centrally orthocomplete effect algebras, Algebra Univ. 64 (2010) 283-307. doi: 10.1007/s00012-010-0100-5. Zbl1218.06005
- [12] D.J. Foulis and S. Pulmannová, Hull mappings and dimension effect algebras, Math. Slovaca 61 (2011) 485-522. doi: 10.2478/s12175-011-0025-2. Zbl1265.81003
- [13] D.J. Foulis and S. Pulmannová, The exocenter of a generalized effect algebra, Rep. Math. Phys. 61 (2011) 347-371. Zbl1257.81003
- [14] D.J. Foulis and S. Pulmannová, The center of a generalized effect algebra, to appear in Demonstratio Math. Zbl1318.06007
- [15] D.J. Foulis and S. Pulmannová, Hull determination and type decomposition for a generalized effect algebra, Algebra Univers. 69 (2013) 45-81. doi: 10.1007/s00012-012-0214-z. Zbl1275.03165
- [16] D.J. Foulis, S. Pulmannová and E. Vinceková, Type decomposition of a pseudoeffect algebra, J. Aust. Math. Soc. 89 (2010) 335-358. doi: 10.1017/S1446788711001042. Zbl1235.06011
- [17] K.R. Goodearl and F. Wehrung, The Complete Dimension Theory of Partially Ordered Systems with Equivalence and Orthogonality, Mem. Amer. Math. Soc. 831 (2005). Zbl1075.06001
- [18] R.J. Greechie, D.J. Foulis and S. Pulmannová, The center of an effect algebra, Order 12 (1995) 91-106. doi: 10.1007/BF01108592. Zbl0846.03031
- [19] G. Grätzer, General Lattice Theory (Academic Press, New York, 1978). Zbl0436.06001
- [20] J. Hedlíková and S. Pulmannová, Generalized difference posets and orthoalgebras, Acta Math. Univ. Comenianae 45 (1996) 247-279. Zbl0922.06002
- [21] M.F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci and Math. 8 (1968) 89-94. Zbl0169.02104
- [22] G. Jenča, Subcentral ideals in generalized effect algebras, Int. J. Theor. Phys. 39 (2000) 745-755. doi: 10.1023?A:1003610426013. Zbl0957.03060
- [23] G. Kalmbach, Measures and Hilbert Lattices (World Scientific Publishing Co., Singapore, 1986).
- [24] G. Kalmbach and Z. Riečanová, An axiomatization for abelian relative inverses, Demonstratio Math. 27 (1994) 535-537. Zbl0826.08002
- [25] F. Kôpka and F. Chovanec, D-posets, Math. Slovaca 44 (1994) 21-34.
- [26] L.H. Loomis, The Lattice-Theoretic Background of the Dimension Theory of Operator Algebras (Mem. Amer. Math. Soc. No. 18, 1955). Zbl0067.08702
- [27] S. Maeda, Dimension functions on certain general lattices, J. Sci. Hiroshima Univ A 19 (1955) 211-237. Zbl0068.02502
- [28] A. Mayet-Ippolito, Generalized orthomodular posets, Demonstratio Math. 24 (1991) 263-274.
- [29] F.J. Murray and J. von Neumann, On Rings of Operators, J. von Neumann colected works, vol. III, Pergamon Press, Oxford, 1961, 6-321.
- [30] S. Pulmannová and E. Vinceková, Riesz ideals in generalized effect algebras and in their unitizations, Algebra Univ. 57 (2007) 393-417. doi: 10.1007/s00012-007-2043-z. Zbl1139.81007
- [31] S. Pulmannová and E. Vinceková, Abelian extensions of partially ordered partial monoids, Soft Comput. 16 (2012) 1339-1346. doi: 10.1007/s00500-012-0814-8. Zbl1284.06037
- [32] A. Ramsay, Dimension theory in complete weakly modular orthocomplemented lattices, Trans. Amer. Math. Soc. 116 (1965) 9-31. Zbl0163.26206
- [33] Z. Riečanová, Subalgebras, intervals, and central elements of generalized effect algebras, Int. J. Theor. Phys. 38 (1999) 3209-3220. doi: 10.1023/A:1026682215765. Zbl0963.03087
- [34] M.H. Stone, Postulates for Boolean algebras and generalized Boolean algebras, Amer. J. Math. 57 (1935) 703-732. Zbl61.0975.05
- [35] A. Wilce, Perspectivity and congruence in partial Abelian semigroups, Math. Slovaca 48 (1998) 117-135. Zbl0938.03094
- [36] Y. Xie and Y. Li, Riesz ideals in generalized pseudo effect algebras and in their unitizations, Soft Comput. 14 (2010) 387-398. doi: 10.1007/s00500-009-0412-6. Zbl1194.03053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.