The exocenter and type decomposition of a generalized pseudoeffect algebra

David J. Foulis; Silvia Pulmannová; Elena Vinceková

Discussiones Mathematicae - General Algebra and Applications (2013)

  • Volume: 33, Issue: 1, page 13-47
  • ISSN: 1509-9415

Abstract

top
We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.

How to cite

top

David J. Foulis, Silvia Pulmannová, and Elena Vinceková. "The exocenter and type decomposition of a generalized pseudoeffect algebra." Discussiones Mathematicae - General Algebra and Applications 33.1 (2013): 13-47. <http://eudml.org/doc/270278>.

@article{DavidJ2013,
abstract = {We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.},
author = {David J. Foulis, Silvia Pulmannová, Elena Vinceková},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudoeffect algebra; generalized pseudoeffect algebra; center; exocenter; central orthocompleteness; type determining set; type decomposition; effect algebra; generalized effect algebra; orthosummable family; boolean algebra; hull system; exocentral cover; von Neumann algebra; types I/II/III.},
language = {eng},
number = {1},
pages = {13-47},
title = {The exocenter and type decomposition of a generalized pseudoeffect algebra},
url = {http://eudml.org/doc/270278},
volume = {33},
year = {2013},
}

TY - JOUR
AU - David J. Foulis
AU - Silvia Pulmannová
AU - Elena Vinceková
TI - The exocenter and type decomposition of a generalized pseudoeffect algebra
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2013
VL - 33
IS - 1
SP - 13
EP - 47
AB - We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.
LA - eng
KW - pseudoeffect algebra; generalized pseudoeffect algebra; center; exocenter; central orthocompleteness; type determining set; type decomposition; effect algebra; generalized effect algebra; orthosummable family; boolean algebra; hull system; exocentral cover; von Neumann algebra; types I/II/III.
UR - http://eudml.org/doc/270278
ER -

References

top
  1. [1] P. Bush, P. Lahti and P. Mittelstaedt, The Quantum Theory of Measurement (Lecture Notes in Physics, Springer, Berlin-Heidelberg-New York, 1991). 
  2. [2] J.C Carrega, G. Chevalier and R. Mayet, Direct decomposition of orthomodular lattices, Alg. Univers. 27 (1990) 480-496. doi: 10.1007/DF01188994. Zbl0715.06006
  3. [3] A. Dvurečenskij, Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras, J. Aust. Math. Soc. 74 (2003) 121-143. Zbl1033.03036
  4. [4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures (Kluwer, Dordrecht, 2000). Zbl0987.81005
  5. [5] A. Dvurečenskij and T. Vetterlein, Pseudoeffect algebras I. Basic properties, Int. J. Theor. Phys. 40 (2001) 685-701. doi: 10.1023/A:1004192715509. Zbl0994.81008
  6. [6] A. Dvurečenskij and T. Vetterlein, Pseudoeffect algebras II. Group representations, Int. J. Theor. Phys. 40 (2001) 703-726. doi: 10.1023/A:1004144832348. Zbl0994.81009
  7. [7] A. Dvurečenskij and T. Vetterlein, Algebras in the positive cone of po-groups, Order 19 (2002) 127-146. doi: 10.1023A:1016551707-476. Zbl1012.03064
  8. [8] A. Dvurečenskij and T. Vetterlein, Generalized pseudo-effect algebras, in: Lectures on Soft Computing and Fuzzy Logic; Adv. Soft Comput, (Ed(s)), (Physica, Heidelberg, 2001) 89-111. Zbl1012.03063
  9. [9] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994) 1331-1352. doi: 10.1007/BF02283036. Zbl1213.06004
  10. [10] D.J. Foulis and S. Pulmannová, Type-decomposition of an effect algebra, Found. Phys. 40 (2010) 1543-1565. doi: 10.1007/s10701-009-9344-3. 
  11. [11] D.J Foulis and S. Pulmannová, Centrally orthocomplete effect algebras, Algebra Univ. 64 (2010) 283-307. doi: 10.1007/s00012-010-0100-5. Zbl1218.06005
  12. [12] D.J. Foulis and S. Pulmannová, Hull mappings and dimension effect algebras, Math. Slovaca 61 (2011) 485-522. doi: 10.2478/s12175-011-0025-2. Zbl1265.81003
  13. [13] D.J. Foulis and S. Pulmannová, The exocenter of a generalized effect algebra, Rep. Math. Phys. 61 (2011) 347-371. Zbl1257.81003
  14. [14] D.J. Foulis and S. Pulmannová, The center of a generalized effect algebra, to appear in Demonstratio Math. Zbl1318.06007
  15. [15] D.J. Foulis and S. Pulmannová, Hull determination and type decomposition for a generalized effect algebra, Algebra Univers. 69 (2013) 45-81. doi: 10.1007/s00012-012-0214-z. Zbl1275.03165
  16. [16] D.J. Foulis, S. Pulmannová and E. Vinceková, Type decomposition of a pseudoeffect algebra, J. Aust. Math. Soc. 89 (2010) 335-358. doi: 10.1017/S1446788711001042. Zbl1235.06011
  17. [17] K.R. Goodearl and F. Wehrung, The Complete Dimension Theory of Partially Ordered Systems with Equivalence and Orthogonality, Mem. Amer. Math. Soc. 831 (2005). Zbl1075.06001
  18. [18] R.J. Greechie, D.J. Foulis and S. Pulmannová, The center of an effect algebra, Order 12 (1995) 91-106. doi: 10.1007/BF01108592. Zbl0846.03031
  19. [19] G. Grätzer, General Lattice Theory (Academic Press, New York, 1978). Zbl0436.06001
  20. [20] J. Hedlíková and S. Pulmannová, Generalized difference posets and orthoalgebras, Acta Math. Univ. Comenianae 45 (1996) 247-279. Zbl0922.06002
  21. [21] M.F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci and Math. 8 (1968) 89-94. Zbl0169.02104
  22. [22] G. Jenča, Subcentral ideals in generalized effect algebras, Int. J. Theor. Phys. 39 (2000) 745-755. doi: 10.1023?A:1003610426013. Zbl0957.03060
  23. [23] G. Kalmbach, Measures and Hilbert Lattices (World Scientific Publishing Co., Singapore, 1986). 
  24. [24] G. Kalmbach and Z. Riečanová, An axiomatization for abelian relative inverses, Demonstratio Math. 27 (1994) 535-537. Zbl0826.08002
  25. [25] F. Kôpka and F. Chovanec, D-posets, Math. Slovaca 44 (1994) 21-34. 
  26. [26] L.H. Loomis, The Lattice-Theoretic Background of the Dimension Theory of Operator Algebras (Mem. Amer. Math. Soc. No. 18, 1955). Zbl0067.08702
  27. [27] S. Maeda, Dimension functions on certain general lattices, J. Sci. Hiroshima Univ A 19 (1955) 211-237. Zbl0068.02502
  28. [28] A. Mayet-Ippolito, Generalized orthomodular posets, Demonstratio Math. 24 (1991) 263-274. 
  29. [29] F.J. Murray and J. von Neumann, On Rings of Operators, J. von Neumann colected works, vol. III, Pergamon Press, Oxford, 1961, 6-321. 
  30. [30] S. Pulmannová and E. Vinceková, Riesz ideals in generalized effect algebras and in their unitizations, Algebra Univ. 57 (2007) 393-417. doi: 10.1007/s00012-007-2043-z. Zbl1139.81007
  31. [31] S. Pulmannová and E. Vinceková, Abelian extensions of partially ordered partial monoids, Soft Comput. 16 (2012) 1339-1346. doi: 10.1007/s00500-012-0814-8. Zbl1284.06037
  32. [32] A. Ramsay, Dimension theory in complete weakly modular orthocomplemented lattices, Trans. Amer. Math. Soc. 116 (1965) 9-31. Zbl0163.26206
  33. [33] Z. Riečanová, Subalgebras, intervals, and central elements of generalized effect algebras, Int. J. Theor. Phys. 38 (1999) 3209-3220. doi: 10.1023/A:1026682215765. Zbl0963.03087
  34. [34] M.H. Stone, Postulates for Boolean algebras and generalized Boolean algebras, Amer. J. Math. 57 (1935) 703-732. Zbl61.0975.05
  35. [35] A. Wilce, Perspectivity and congruence in partial Abelian semigroups, Math. Slovaca 48 (1998) 117-135. Zbl0938.03094
  36. [36] Y. Xie and Y. Li, Riesz ideals in generalized pseudo effect algebras and in their unitizations, Soft Comput. 14 (2010) 387-398. doi: 10.1007/s00500-009-0412-6. Zbl1194.03053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.