A category theoretical background for homomorphism theorems
The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
Given a generating family F of subgroups of a group G closed under conjugation and with partial order compatible with inclusion, a new group S can be constructed, taking into account the multiplication in the subgroups and their mutual actions given by conjugation. The group S is called the active sum of F, has G as a homomorph and is such that S/Z(S) ≅ G/Z(G) where Z denotes the center.The basic question we investigate in this paper is: when is the active sum S of the family F isomorphic to the...
The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols. If the object class of a dhts-category...
We prove that the interval topology of an Archimedean atomic lattice effect algebra is Hausdorff whenever the set of all atoms of is almost orthogonal. In such a case is order continuous. If moreover is complete then order convergence of nets of elements of is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on corresponding to compact and cocompact elements....
We present an algorithm for constructing the free algebra over a given finite partial algebra in the variety determined by a finite list of equations. The algorithm succeeds whenever the desired free algebra is finite.
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.
The article considers a problem from Trokhimenko paper [13] concerning the study of abstract properties of commutations of operations and their connection with the Menger and Mann superpositions. Namely, abstract characterizations of some classes of operation algebras, whose signature consists of arbitrary families of commutations of operations, Menger and Mann superpositions and their various connections are found. Some unsolved problems are given at the end of the article.
Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.