A note on total colorings of planar graphs without 4-cycles
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 1, page 125-135
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topPing Wang, and Jian-Liang Wu. "A note on total colorings of planar graphs without 4-cycles." Discussiones Mathematicae Graph Theory 24.1 (2004): 125-135. <http://eudml.org/doc/270290>.
@article{PingWang2004,
abstract = {Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ \{(7,4),(6,5),(5,7),(4,14)\}.},
author = {Ping Wang, Jian-Liang Wu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {total coloring; planar graph; list coloring; girth; chromatic number},
language = {eng},
number = {1},
pages = {125-135},
title = {A note on total colorings of planar graphs without 4-cycles},
url = {http://eudml.org/doc/270290},
volume = {24},
year = {2004},
}
TY - JOUR
AU - Ping Wang
AU - Jian-Liang Wu
TI - A note on total colorings of planar graphs without 4-cycles
JO - Discussiones Mathematicae Graph Theory
PY - 2004
VL - 24
IS - 1
SP - 125
EP - 135
AB - Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.
LA - eng
KW - total coloring; planar graph; list coloring; girth; chromatic number
UR - http://eudml.org/doc/270290
ER -
References
top- [1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).
- [2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. Zbl0653.05029
- [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G Zbl0883.05053
- [4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. Zbl0886.05065
- [5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. Zbl0876.05032
- [6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987).
- [7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R. Zbl0793.05059
- [8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995).
- [9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893. Zbl0931.05036
- [10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8. Zbl0695.05023
- [11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996). Zbl0839.05001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.