## Displaying similar documents to “A note on total colorings of planar graphs without 4-cycles”

### Planar graphs without 4-, 5- and 8-cycles are 3-colorable

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we prove that every planar graph without 4, 5 and 8-cycles is 3-colorable.

### Hamiltonicity and Generalised Total Colourings of Planar Graphs

Discussiones Mathematicae Graph Theory

Similarity:

The total generalised colourings considered in this paper are colourings of graphs such that the vertices and edges of the graph which receive the same colour induce subgraphs from two prescribed hereditary graph properties while incident elements receive different colours. The associated total chromatic number is the least number of colours with which this is possible. We study such colourings for sets of planar graphs and determine, in particular, upper bounds for these chromatic numbers...

### Circular degree choosability.

The Electronic Journal of Combinatorics [electronic only]

Similarity:

### Chromatic numbers of the strong product of odd cycles

Mathematica Slovaca

Similarity:

### WORM Colorings of Planar Graphs

Discussiones Mathematicae Graph Theory

Similarity:

Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is...

### Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a planar graph with no two 3-cycles sharing an edge. We show that if Δ(G) ≥ 9, then χ'ₗ(G) = Δ(G) and χ''ₗ(G) = Δ(G)+1. We also show that if Δ(G) ≥ 6, then χ'ₗ(G) ≤ Δ(G)+1 and if Δ(G) ≥ 7, then χ''ₗ(G) ≤ Δ(G)+2. All of these results extend to graphs in the projective plane and when Δ(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-choosability result improves on work of Wang and Lih and of Zhang and Wu. All of our results use the discharging...

### The b-chromatic number of power graphs.

Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]

Similarity:

### The Grötzsch theorem for the hypergraph of maximal cliques.

The Electronic Journal of Combinatorics [electronic only]

Similarity:

### Coloring with no 2-colored ${P}_{4}$'s.

The Electronic Journal of Combinatorics [electronic only]

Similarity:

### Analogues of cliques for oriented coloring

Discussiones Mathematicae Graph Theory

Similarity:

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.

### On uniquely colorable graphs without short cycles

Časopis pro pěstování matematiky

Similarity:

### Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs

Discussiones Mathematicae Graph Theory

Similarity:

We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.

### Strong Edge-Coloring Of Planar Graphs

Discussiones Mathematicae Graph Theory

Similarity:

A strong edge-coloring of a graph is a proper edge-coloring where each color class induces a matching. We denote by 𝜒's(G) the strong chromatic index of G which is the smallest integer k such that G can be strongly edge-colored with k colors. It is known that every planar graph G has a strong edge-coloring with at most 4 Δ(G) + 4 colors [R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211]. In this paper, we show that...

### Equitable Colorings Of Corona Multiproducts Of Graphs

Discussiones Mathematicae Graph Theory

Similarity:

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by 𝜒=(G). It is known that the problem of computation of 𝜒=(G) is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts...