# Hamilton decompositions of line graphs of some bipartite graphs

Discussiones Mathematicae Graph Theory (2005)

- Volume: 25, Issue: 3, page 303-310
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topDavid A. Pike. "Hamilton decompositions of line graphs of some bipartite graphs." Discussiones Mathematicae Graph Theory 25.3 (2005): 303-310. <http://eudml.org/doc/270296>.

@article{DavidA2005,

abstract = {Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).},

author = {David A. Pike},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {Hamilton cycles; graph decompositions; line graphs; Hamilton cycle},

language = {eng},

number = {3},

pages = {303-310},

title = {Hamilton decompositions of line graphs of some bipartite graphs},

url = {http://eudml.org/doc/270296},

volume = {25},

year = {2005},

}

TY - JOUR

AU - David A. Pike

TI - Hamilton decompositions of line graphs of some bipartite graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2005

VL - 25

IS - 3

SP - 303

EP - 310

AB - Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).

LA - eng

KW - Hamilton cycles; graph decompositions; line graphs; Hamilton cycle

UR - http://eudml.org/doc/270296

ER -

## References

top- [1] J.C. Bermond, Problem 97, Discrete Math. 71 (1988) 275, doi: 10.1016/0012-365X(88)90107-0.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland Publishing Company, New York, 1979). Zbl1226.05083
- [3] K. Heinrich and H. Verrall, A Construction of a perfect set of Euler tours of ${K}_{2k+1}$, J. Combin. Designs 5 (1997) 215-230, doi: 10.1002/(SICI)1520-6610(1997)5:3<215::AID-JCD5>3.0.CO;2-I Zbl0914.05047
- [4] F. Jaeger, The 1-factorization of some line-graphs, Discrete Math. 46 (1983) 89-92, doi: 10.1016/0012-365X(83)90274-1. Zbl0523.05054
- [5] A. Kotzig, Z teorie konecných pravidelných grafov tretieho a stvrtého stupna, Casopis Pest. Mat. 82 (1957) 76-92.
- [6] P. Martin, Cycles Hamiltoniens dans les graphes 4-réguliers 4-connexes, Aequationes Math. 14 (1976) 37-40, doi: 10.1007/BF01836203. Zbl0328.05118
- [7] A. Muthusamy and P. Paulraja, Hamilton cycle decompositions of line graphs and a conjecture of Bermond, J. Combin. Theory (B) 64 (1995) 1-16, doi: 10.1006/jctb.1995.1024. Zbl0831.05056
- [8] B.R. Myers, Hamiltonian factorization of the product of a complete graph with itself, Networks 2 (1972) 1-9, doi: 10.1002/net.3230020102. Zbl0241.94037
- [9] D.A. Pike, Hamilton decompositions of some line graphs, J. Graph Theory 20 (1995) 473-479, doi: 10.1002/jgt.3190200411. Zbl0921.05049
- [10] D.A. Pike, Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree, Australasian J. Combin. 12 (1995) 291-294. Zbl0844.05073
- [11] H. Verrall, A Construction of a perfect set of Euler tours of ${K}_{2k}+I$, J. Combin. Designs 6 (1998) 183-211, doi: 10.1002/(SICI)1520-6610(1998)6:3<183::AID-JCD2>3.0.CO;2-B Zbl0911.05047
- [12] S. Zhan, Circuits and Cycle Decompositions (Ph.D. thesis, Simon Fraser University, 1992).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.