Partitions of a graph into cycles containing a specified linear forest
Ryota Matsubara; Hajime Matsumura
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 1, page 97-107
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topRyota Matsubara, and Hajime Matsumura. "Partitions of a graph into cycles containing a specified linear forest." Discussiones Mathematicae Graph Theory 28.1 (2008): 97-107. <http://eudml.org/doc/270310>.
@article{RyotaMatsubara2008,
abstract = {In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.},
author = {Ryota Matsubara, Hajime Matsumura},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {partition of a graph; vertex-disjoint cycle; 2-factor; linear forest},
language = {eng},
number = {1},
pages = {97-107},
title = {Partitions of a graph into cycles containing a specified linear forest},
url = {http://eudml.org/doc/270310},
volume = {28},
year = {2008},
}
TY - JOUR
AU - Ryota Matsubara
AU - Hajime Matsumura
TI - Partitions of a graph into cycles containing a specified linear forest
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 1
SP - 97
EP - 107
AB - In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.
LA - eng
KW - partition of a graph; vertex-disjoint cycle; 2-factor; linear forest
UR - http://eudml.org/doc/270310
ER -
References
top- [1] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2<165::AID-JGT4>3.0.CO;2-O Zbl0879.05060
- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th edition (Chapman & Hall, London, 2004).
- [3] Y. Egawa, H. Enomoto, R.J. Faudree, H. Li and I. Schiermeyer, Two factors each component of which contains a specified vertex, J. Graph Theory 43 (2003) 188-198, doi: 10.1002/jgt.10113. Zbl1024.05073
- [4] Y. Egawa, R.J. Faudree, E. Györi, Y. Ishigami, R.H. Schelp and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92, doi: 10.1007/s003730050005. Zbl0951.05061
- [5] Y. Egawa and R. Matsubara, Vertex-disjoint cycles containing specified vertices in a graph, AKCE Int. J. Graphs Comb. 3 (1) (2006) 65-92. Zbl1143.05044
- [6] H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101, doi: 10.1016/S0012-365X(00)00229-6. Zbl0985.05036
- [7] H. Enomoto and H. Matsumura, Cycle-partition of a graph with specified vertices and edges, to appear in Ars Combinatoria. Zbl1224.05403
- [8] Y. Ishigami and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002) 127-137, doi: 10.1016/S0012-365X(01)00137-6. Zbl0990.05081
- [9] A. Kaneko and K. Yoshimoto, On a 2-factor with a specified edge in a graph satisfying the Ore condition, Discrete Math. 257 (2002) 445-461, doi: 10.1016/S0012-365X(02)00506-X. Zbl1008.05118
- [10] R. Matsubara and T. Sakai, Cycles and degenerate cycles through specified vertices, Far East J. Appl. Math. 20 (2005) 201-208. Zbl1084.05038
- [11] T. Sakai, Degree-sum conditions for graphs to have 2-factors with cycles through specified vertices, SUT J. Math. 38 (2002) 211-222. Zbl1029.05127
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.