Graded Hilbert-symbol equivalence of number fields
Discussiones Mathematicae - General Algebra and Applications (2015)
- Volume: 35, Issue: 1, page 105-113
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P.E. Conner, R. Perlis and K. Szymiczek, Wild sets and 2-ranks of class groups, Acta Arith. 79 (1) (1997) 83-91. Zbl0880.11039
- [2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1) (1991) 27-46. Zbl0733.11012
- [3] A. Czogała, Higher degree tame Hilbert-symbol equivalence of number fields, Abh. Math. Sem. Univ. Hamburg 69 (1999) 175-185. doi: 10.1007/BF02940871 Zbl0968.11038
- [4] A. Czogała, Równoważność Hilberta ciał globalnych, volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001.
- [5] A. Czogała and B. Rothkegel, Wild primes of a self-equivalence of a number field, Acta Arith. 166 (4) (2014) 335-348. doi: 10.4064/aa166-4-2 Zbl1319.11077
- [6] A. Czogała and A. Sładek, Higher degree Hilbert-symbol equivalence of number fields, Tatra Mt. Math. Publ. 11 (1997) 77-88. Number theory (Liptovský Ján, 1995). Zbl0978.11058
- [7] A. Czogała and A. Sładek, Higher degree Hilbert symbol equivalence of algebraic number fields, II, J. Number Theory 72 (2) (1998) 363-376. doi: 10.1006/jnth.1998.2266
- [8] D.K. Harrison, Witt Rings, Lecture notes, Department of Mathematics, University of Kentucky (Lexington, Kentucky, 1970).
- [9] P. Koprowski, Graded quaternion symbol equivalence of function fields, Czechoslovak Math. J. 57 (132) (4) (2007), 1311-1319. doi: 10.1007/s10587-007-0125-x Zbl1190.11029
- [10] T.Y. Lam, Introduction to Quadratic Forms Over Fields, volume 67 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. Zbl1068.11023
- [11] T.C. Palfrey, Density Theorems for Reciprocity Equivalences, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)-Louisiana State University and Agricultural & Mechanical College. Zbl0923.11066
- [12] R. Perlis, K. Szymiczek, P.E. Conner and R. Litherland, Matching Witts with global fields, in: Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365-387. Amer. Math. Soc., Providence, RI, 1994. Zbl0807.11024
- [13] A. Sładek, Higher degree Harrison equivalence and Milnor K-functor, in: Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997), 6 (1998) 183-190.
- [14] M. Somodi, On the size of the wild set, Canad. J. Math. 57 (1) (2005) 180-203. doi: 10.4153/CJM-2005-008-6 Zbl1073.11026
- [15] M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (4) (2006) 327-334. doi: 10.4064/aa121-4-3
- [16] K. Szymiczek, Matching Witts locally and globally, Math. Slovaca 41 (3) (1991) 315-330. Zbl0766.11023
- [17] K. Szymiczek, Witt equivalence of global fields, Comm. Algebra 19 (4) (1991) 1125-1149. Zbl0724.11020
- [18] K. Szymiczek, Quadratic forms, in: Handbook of algebra, Vol. 6, pages 35-80 (Elsevier/North-Holland, Amsterdam, 2009). doi: 10.1016/S1570-7954(08)00202-7 Zbl1213.11092