Graded Hilbert-symbol equivalence of number fields

Przemysław Koprowski

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 1, page 105-113
  • ISSN: 1509-9415

Abstract

top
We present a new criterion for the existence of Hilbert-symbol equivalence of two number fields. In principle, we show that the system of local conditions for this equivalence may be expressed in terms of Clifford invariants in place of Hilbert-symbols, shifting the focus from Brauer groups to Brauer-Wall groups.

How to cite

top

Przemysław Koprowski. "Graded Hilbert-symbol equivalence of number fields." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 105-113. <http://eudml.org/doc/270351>.

@article{PrzemysławKoprowski2015,
abstract = {We present a new criterion for the existence of Hilbert-symbol equivalence of two number fields. In principle, we show that the system of local conditions for this equivalence may be expressed in terms of Clifford invariants in place of Hilbert-symbols, shifting the focus from Brauer groups to Brauer-Wall groups.},
author = {Przemysław Koprowski},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Brauer group; Brauer-Wall group; Hilbert symbol equivalence; Witt equivalence; graded quaternion algebras},
language = {eng},
number = {1},
pages = {105-113},
title = {Graded Hilbert-symbol equivalence of number fields},
url = {http://eudml.org/doc/270351},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Przemysław Koprowski
TI - Graded Hilbert-symbol equivalence of number fields
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 1
SP - 105
EP - 113
AB - We present a new criterion for the existence of Hilbert-symbol equivalence of two number fields. In principle, we show that the system of local conditions for this equivalence may be expressed in terms of Clifford invariants in place of Hilbert-symbols, shifting the focus from Brauer groups to Brauer-Wall groups.
LA - eng
KW - Brauer group; Brauer-Wall group; Hilbert symbol equivalence; Witt equivalence; graded quaternion algebras
UR - http://eudml.org/doc/270351
ER -

References

top
  1. [1] P.E. Conner, R. Perlis and K. Szymiczek, Wild sets and 2-ranks of class groups, Acta Arith. 79 (1) (1997) 83-91. Zbl0880.11039
  2. [2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1) (1991) 27-46. Zbl0733.11012
  3. [3] A. Czogała, Higher degree tame Hilbert-symbol equivalence of number fields, Abh. Math. Sem. Univ. Hamburg 69 (1999) 175-185. doi: 10.1007/BF02940871 Zbl0968.11038
  4. [4] A. Czogała, Równoważność Hilberta ciał globalnych, volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. 
  5. [5] A. Czogała and B. Rothkegel, Wild primes of a self-equivalence of a number field, Acta Arith. 166 (4) (2014) 335-348. doi: 10.4064/aa166-4-2 Zbl1319.11077
  6. [6] A. Czogała and A. Sładek, Higher degree Hilbert-symbol equivalence of number fields, Tatra Mt. Math. Publ. 11 (1997) 77-88. Number theory (Liptovský Ján, 1995). Zbl0978.11058
  7. [7] A. Czogała and A. Sładek, Higher degree Hilbert symbol equivalence of algebraic number fields, II, J. Number Theory 72 (2) (1998) 363-376. doi: 10.1006/jnth.1998.2266 
  8. [8] D.K. Harrison, Witt Rings, Lecture notes, Department of Mathematics, University of Kentucky (Lexington, Kentucky, 1970). 
  9. [9] P. Koprowski, Graded quaternion symbol equivalence of function fields, Czechoslovak Math. J. 57 (132) (4) (2007), 1311-1319. doi: 10.1007/s10587-007-0125-x Zbl1190.11029
  10. [10] T.Y. Lam, Introduction to Quadratic Forms Over Fields, volume 67 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. Zbl1068.11023
  11. [11] T.C. Palfrey, Density Theorems for Reciprocity Equivalences, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)-Louisiana State University and Agricultural & Mechanical College. Zbl0923.11066
  12. [12] R. Perlis, K. Szymiczek, P.E. Conner and R. Litherland, Matching Witts with global fields, in: Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365-387. Amer. Math. Soc., Providence, RI, 1994. Zbl0807.11024
  13. [13] A. Sładek, Higher degree Harrison equivalence and Milnor K-functor, in: Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997), 6 (1998) 183-190. 
  14. [14] M. Somodi, On the size of the wild set, Canad. J. Math. 57 (1) (2005) 180-203. doi: 10.4153/CJM-2005-008-6 Zbl1073.11026
  15. [15] M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (4) (2006) 327-334. doi: 10.4064/aa121-4-3 
  16. [16] K. Szymiczek, Matching Witts locally and globally, Math. Slovaca 41 (3) (1991) 315-330. Zbl0766.11023
  17. [17] K. Szymiczek, Witt equivalence of global fields, Comm. Algebra 19 (4) (1991) 1125-1149. Zbl0724.11020
  18. [18] K. Szymiczek, Quadratic forms, in: Handbook of algebra, Vol. 6, pages 35-80 (Elsevier/North-Holland, Amsterdam, 2009). doi: 10.1016/S1570-7954(08)00202-7 Zbl1213.11092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.