Graded quaternion symbol equivalence of function fields

Przemysław Koprowski

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 4, page 1311-1319
  • ISSN: 0011-4642

Abstract

top
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.

How to cite

top

Koprowski, Przemysław. "Graded quaternion symbol equivalence of function fields." Czechoslovak Mathematical Journal 57.4 (2007): 1311-1319. <http://eudml.org/doc/31194>.

@article{Koprowski2007,
abstract = {We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.},
author = {Koprowski, Przemysław},
journal = {Czechoslovak Mathematical Journal},
keywords = {Brauer group; Brauer-Wall group; Witt equivalence; quaternion-symbol equivalence; Brauer group},
language = {eng},
number = {4},
pages = {1311-1319},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Graded quaternion symbol equivalence of function fields},
url = {http://eudml.org/doc/31194},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Koprowski, Przemysław
TI - Graded quaternion symbol equivalence of function fields
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 1311
EP - 1319
AB - We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
LA - eng
KW - Brauer group; Brauer-Wall group; Witt equivalence; quaternion-symbol equivalence; Brauer group
UR - http://eudml.org/doc/31194
ER -

References

top
  1. Równowa.zność Hilberta ciał globalnych, Volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. (2001) MR1852938
  2. On algebraic curves over real closed fields. II, Math. Z. 151 (1976), 189–205. (1976) Zbl0328.14012MR0441979
  3. 10.4064/cm91-2-8, Colloq. Math. 91 (2002), 293–302. (2002) Zbl1030.11017MR1898636DOI10.4064/cm91-2-8
  4. 10.1007/s002090100336, Math. Z. 242 (2002), 323–345. (2002) Zbl1067.11020MR1980626DOI10.1007/s002090100336
  5. Integral equivalence of real algebraic function fields, Tatra Mt. Math. Publ. 32 (2005), 53–61. (2005) Zbl1150.11420MR2206911
  6. Introduction to quadratic forms over fields, Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. (2005) Zbl1068.11023MR2104929
  7. Matching Witts with global fields, In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. MR1260721
  8. Matching Witts locally and globally, Math. Slovaca 41 (1991), 315–330. (1991) Zbl0766.11023MR1126669
  9. 10.1080/00927879108824194, Comm. Algebra 19 (1991), 1125–1149. (1991) Zbl0724.11020MR1102331DOI10.1080/00927879108824194
  10. Hilbert-symbol equivalence of number fields, Tatra Mt. Math. Publ. 11 (1997), 7–16. (1997) Zbl0978.11012MR1475500
  11. A characterization of tame Hilbert-symbol equivalence, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 191–201. (1998) Zbl1024.11022MR1822530

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.