Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments

Hortensia Galeana-Sanchez; Rocío Rojas-Monroy

Discussiones Mathematicae Graph Theory (2008)

  • Volume: 28, Issue: 2, page 285-306
  • ISSN: 2083-5892

Abstract

top
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)∖N there is a vertex y ∈ N such that there is an xy-monochromatic directed path. In this paper it is proved that if D is an m-coloured bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and D has no induced particular 6-element bipartite tournament T̃₆, then D has a kernel by monochromatic paths.

How to cite

top

Hortensia Galeana-Sanchez, and Rocío Rojas-Monroy. "Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments." Discussiones Mathematicae Graph Theory 28.2 (2008): 285-306. <http://eudml.org/doc/270359>.

@article{HortensiaGaleana2008,
abstract = { We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)∖N there is a vertex y ∈ N such that there is an xy-monochromatic directed path. In this paper it is proved that if D is an m-coloured bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and D has no induced particular 6-element bipartite tournament T̃₆, then D has a kernel by monochromatic paths. },
author = {Hortensia Galeana-Sanchez, Rocío Rojas-Monroy},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {kernel; kernel by monochromatic paths; bipartite tournament},
language = {eng},
number = {2},
pages = {285-306},
title = {Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments},
url = {http://eudml.org/doc/270359},
volume = {28},
year = {2008},
}

TY - JOUR
AU - Hortensia Galeana-Sanchez
AU - Rocío Rojas-Monroy
TI - Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 2
SP - 285
EP - 306
AB - We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)∖N there is a vertex y ∈ N such that there is an xy-monochromatic directed path. In this paper it is proved that if D is an m-coloured bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and D has no induced particular 6-element bipartite tournament T̃₆, then D has a kernel by monochromatic paths.
LA - eng
KW - kernel; kernel by monochromatic paths; bipartite tournament
UR - http://eudml.org/doc/270359
ER -

References

top
  1. [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985). 
  2. [2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4. 
  3. [3] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. Zbl0456.05032
  4. [4] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. Zbl0529.05024
  5. [5] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V. 
  6. [6] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3. Zbl0958.05061
  7. [7] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254, doi: 10.7151/dmgt.1123. Zbl0990.05059
  8. [8] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge-coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318, doi: 10.1016/j.disc.2004.03.005. Zbl1049.05042
  9. [9] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276, doi: 10.1016/j.disc.2003.11.015. Zbl1042.05039
  10. [10] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99, doi: 10.1016/j.disc.2003.10.024. Zbl1042.05049
  11. [11] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755. Zbl0053.02902
  12. [12] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. Zbl0654.05033
  13. [13] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. Zbl0488.05036
  14. [14] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944). Zbl0063.05930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.