γ-Cycles In Arc-Colored Digraphs

Hortensia Galeana-Sánchez; Guadalupe Gaytán-Gómez; Rocío Rojas-Monroy

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 1, page 103-116
  • ISSN: 2083-5892

Abstract

top
We call a digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path (or a directed cycle) is called monochromatic if all of its arcs are colored alike. A subdigraph H in D is called rainbow if all of its arcs have different colors. A set N ⊆ V (D) is said to be a kernel by monochromatic paths of D if it satisfies the two following conditions: for every pair of different vertices u, v ∈ N there is no monochromatic path in D between them, and for every vertex x ∈ V (D) − N there is a vertex y ∈ N such that there is an xy-monochromatic path in D. A γ-cycle in D is a sequence of different vertices γ = (u0, u1, . . . , un, u0) such that for every i ∈ {0, 1, . . . , n}: there is a uiui+1-monochromatic path, and there is no ui+1ui-monochromatic path. The addition over the indices of the vertices of γ is taken modulo (n + 1). If D is an m-colored digraph, then the closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V (ℭ (D)) = V (D), A(ℭ (D)) = A(D) ∪ {(u, v) with color i | there exists a uv-monochromatic path colored i contained in D}. In this work, we prove the following result. Let D be a finite m-colored digraph which satisfies that there is a partition C = C1 ∪ C2 of the set of colors of D such that: D[Ĉi] (the subdigraph spanned by the arcs with colors in Ci) contains no γ-cycles for i ∈ {1, 2}; If ℭ (D) contains a rainbow C3 = (x0, z, w, x0) involving colors of C1 and C2, then (x0, w) ∈ A(ℭ (D)) or (z, x0) ∈ A(ℭ (D)); If ℭ (D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and C2, then at least one of the following pairs of vertices is an arc in ℭ (D): (u, w), (w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0). Then D has a kernel by monochromatic paths. This theorem can be applied to all those digraphs that contain no γ-cycles. Generalizations of many previous results are obtained as a direct consequence of this theorem.

How to cite

top

Hortensia Galeana-Sánchez, Guadalupe Gaytán-Gómez, and Rocío Rojas-Monroy. "γ-Cycles In Arc-Colored Digraphs." Discussiones Mathematicae Graph Theory 36.1 (2016): 103-116. <http://eudml.org/doc/276971>.

@article{HortensiaGaleana2016,
abstract = {We call a digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path (or a directed cycle) is called monochromatic if all of its arcs are colored alike. A subdigraph H in D is called rainbow if all of its arcs have different colors. A set N ⊆ V (D) is said to be a kernel by monochromatic paths of D if it satisfies the two following conditions: for every pair of different vertices u, v ∈ N there is no monochromatic path in D between them, and for every vertex x ∈ V (D) − N there is a vertex y ∈ N such that there is an xy-monochromatic path in D. A γ-cycle in D is a sequence of different vertices γ = (u0, u1, . . . , un, u0) such that for every i ∈ \{0, 1, . . . , n\}: there is a uiui+1-monochromatic path, and there is no ui+1ui-monochromatic path. The addition over the indices of the vertices of γ is taken modulo (n + 1). If D is an m-colored digraph, then the closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V (ℭ (D)) = V (D), A(ℭ (D)) = A(D) ∪ \{(u, v) with color i | there exists a uv-monochromatic path colored i contained in D\}. In this work, we prove the following result. Let D be a finite m-colored digraph which satisfies that there is a partition C = C1 ∪ C2 of the set of colors of D such that: D[Ĉi] (the subdigraph spanned by the arcs with colors in Ci) contains no γ-cycles for i ∈ \{1, 2\}; If ℭ (D) contains a rainbow C3 = (x0, z, w, x0) involving colors of C1 and C2, then (x0, w) ∈ A(ℭ (D)) or (z, x0) ∈ A(ℭ (D)); If ℭ (D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and C2, then at least one of the following pairs of vertices is an arc in ℭ (D): (u, w), (w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0). Then D has a kernel by monochromatic paths. This theorem can be applied to all those digraphs that contain no γ-cycles. Generalizations of many previous results are obtained as a direct consequence of this theorem.},
author = {Hortensia Galeana-Sánchez, Guadalupe Gaytán-Gómez, Rocío Rojas-Monroy},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {digraph; kernel; kernel by monochromatic paths; γ-cycle; -cycle},
language = {eng},
number = {1},
pages = {103-116},
title = {γ-Cycles In Arc-Colored Digraphs},
url = {http://eudml.org/doc/276971},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Hortensia Galeana-Sánchez
AU - Guadalupe Gaytán-Gómez
AU - Rocío Rojas-Monroy
TI - γ-Cycles In Arc-Colored Digraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 103
EP - 116
AB - We call a digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path (or a directed cycle) is called monochromatic if all of its arcs are colored alike. A subdigraph H in D is called rainbow if all of its arcs have different colors. A set N ⊆ V (D) is said to be a kernel by monochromatic paths of D if it satisfies the two following conditions: for every pair of different vertices u, v ∈ N there is no monochromatic path in D between them, and for every vertex x ∈ V (D) − N there is a vertex y ∈ N such that there is an xy-monochromatic path in D. A γ-cycle in D is a sequence of different vertices γ = (u0, u1, . . . , un, u0) such that for every i ∈ {0, 1, . . . , n}: there is a uiui+1-monochromatic path, and there is no ui+1ui-monochromatic path. The addition over the indices of the vertices of γ is taken modulo (n + 1). If D is an m-colored digraph, then the closure of D, denoted by ℭ(D), is the m-colored multidigraph defined as follows: V (ℭ (D)) = V (D), A(ℭ (D)) = A(D) ∪ {(u, v) with color i | there exists a uv-monochromatic path colored i contained in D}. In this work, we prove the following result. Let D be a finite m-colored digraph which satisfies that there is a partition C = C1 ∪ C2 of the set of colors of D such that: D[Ĉi] (the subdigraph spanned by the arcs with colors in Ci) contains no γ-cycles for i ∈ {1, 2}; If ℭ (D) contains a rainbow C3 = (x0, z, w, x0) involving colors of C1 and C2, then (x0, w) ∈ A(ℭ (D)) or (z, x0) ∈ A(ℭ (D)); If ℭ (D) contains a rainbow P3 = (u, z, w, x0) involving colors of C1 and C2, then at least one of the following pairs of vertices is an arc in ℭ (D): (u, w), (w, u), (x0, u), (u, x0), (x0, w), (z, u), (z, x0). Then D has a kernel by monochromatic paths. This theorem can be applied to all those digraphs that contain no γ-cycles. Generalizations of many previous results are obtained as a direct consequence of this theorem.
LA - eng
KW - digraph; kernel; kernel by monochromatic paths; γ-cycle; -cycle
UR - http://eudml.org/doc/276971
ER -

References

top
  1. [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985). 
  2. [2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93–101. doi:10.1016/S0167-5060(08)70041-4[Crossref] 
  3. [3] P. Duchet, Classical perfect graphs: An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67–96. Zbl0558.05038
  4. [4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103–105. doi:10.1016/0012-365X(81)90264-8[Crossref] Zbl0456.05032
  5. [5] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge colored tournaments, Discrete Math. 156 (1996) 103–112. doi:10.1016/0012-365X(95)00036-V[Crossref] 
  6. [6] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87–99. doi:10.1016/S0012-365X(97)00162-3[Crossref][WoS] 
  7. [7] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243–254. doi:10.7151/dmgt.1123[Crossref] Zbl0990.05059
  8. [8] H. Galeana-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy, Monochromatic cycles and monochromatic paths in arc-colored digraphs, Discuss. Math. Graph Theory 31 (2011) 283–292. doi:10.7151/dmgt.1545[Crossref][WoS] Zbl1234.05112
  9. [9] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76. doi:10.1016/0012-365X(84)90131-6[Crossref] Zbl0529.05024
  10. [10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265. doi:10.1016/0012-365X(86)90172-X[Crossref] Zbl0593.05034
  11. [11] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275–276. doi:10.1016/j.disc.2003.11.015[Crossref] Zbl1042.05039
  12. [12] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313–318. doi:10.1016/j.disc.2004.03.005[Crossref] Zbl1049.05042
  13. [13] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and at most 2-coloured arc sets in edge-coloured tournaments, Graphs Combin. 21 (2005) 307–317. doi:10.1007/s00373-005-0618-z[Crossref] Zbl1075.05033
  14. [14] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments, Discuss. Math. Graph Theory 28 (2008) 285–306. doi:10.7151/dmgt.1406[Crossref] Zbl1156.05022
  15. [15] H. Galeana-Sánchez and R. Rojas-Monroy, Independent domination by monochromatic paths in arc coloured bipartite tournaments, AKCE Int. J. Graphs Comb. 6 (2009) 267–285. Zbl1210.05054
  16. [16] H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs, Discuss. Math. Graph Theory 29 (2009) 337–347. doi:10.7151/dmgt.1450[Crossref] Zbl1193.05078
  17. [17] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944). Zbl0063.05930
  18. [18] M. Richardson, Solutions of irreflexive relations, Ann. of Math. 58 (1953) 573–590. doi:10.2307/1969755[Crossref] Zbl0053.02902
  19. [19] M. Richardson, Extension theorems for solutions of irreflexive relations, Proc. Natl. Acad. Sci. USA 39 (1953) 649–655. doi:10.1073/pnas.39.7.649[Crossref] Zbl0053.02903
  20. [20] R. Rojas-Monroy and J.I. Villarreal-Valdés, Kernels in infinite diraphs, AKCE Int. J. Graphs Comb. 7 (2010) 103–111. Zbl1223.05101
  21. [21] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108–111. doi:10.1016/0095-8956(88)90059-7[Crossref] Zbl0654.05033
  22. [22] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271–275. doi:10.1016/0095-8956(82)90047-8[Crossref] Zbl0488.05036
  23. [23] I. Włoch, On imp-sets and kernels by monochromatic paths of the duplication, Ars Combin. 83 (2007) 93–99. Zbl1174.05114
  24. [24] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537–542. doi:10.2478/s11533-008-0044-6[Crossref][WoS] Zbl1152.05033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.