Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice

Jolanta Socała

Annales Polonici Mathematici (1998)

  • Volume: 68, Issue: 1, page 1-16
  • ISSN: 0066-2216

Abstract

top
Asymptotic convergence theorems for nonnegative operators on Banach lattices, on L , on C(X) and on L p ( 1 p < ) are proved. The general results are applied to a class of integral operators on L¹.

How to cite

top

Jolanta Socała. "Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice." Annales Polonici Mathematici 68.1 (1998): 1-16. <http://eudml.org/doc/270372>.

@article{JolantaSocała1998,
abstract = {Asymptotic convergence theorems for nonnegative operators on Banach lattices, on $L^\{∞\}$, on C(X) and on $L^p(1 ≤ p < ∞)$ are proved. The general results are applied to a class of integral operators on L¹.},
author = {Jolanta Socała},
journal = {Annales Polonici Mathematici},
keywords = {nonnegative operator; exponentially stationary operator; integral operator; lower function; asymptotic convergence theorems; nonnegative operators on Banach lattices; integral operators},
language = {eng},
number = {1},
pages = {1-16},
title = {Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice},
url = {http://eudml.org/doc/270372},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Jolanta Socała
TI - Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 1
SP - 1
EP - 16
AB - Asymptotic convergence theorems for nonnegative operators on Banach lattices, on $L^{∞}$, on C(X) and on $L^p(1 ≤ p < ∞)$ are proved. The general results are applied to a class of integral operators on L¹.
LA - eng
KW - nonnegative operator; exponentially stationary operator; integral operator; lower function; asymptotic convergence theorems; nonnegative operators on Banach lattices; integral operators
UR - http://eudml.org/doc/270372
ER -

References

top
  1. [A] H. Amann, Fixed point theorems and nonlinear eigenvalue problems, SIAM Rev. 18 (1976), 620-709. 
  2. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publ., New York, 1958. 
  3. [LM] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. Zbl0606.58002
  4. [LR] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159. Zbl0676.47021
  5. [LY] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
  6. [LY1] A. Lasota and J. A. Yorke, When the long-time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221-240. Zbl0846.47005
  7. [ŁR] K. Łoskot and R. Rudnicki, Relative entropy and stability of stochastic semigroups, Ann. Polon. Math. 53 (1991), 139-145. Zbl0727.60035
  8. [N] R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, in: Fixed Point Theory, Proc. Conf. Sherbrooke, Lecture Notes Math. 886, Springer, 1980, 309-330. 
  9. [R] R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Polish Acad. Sci. Math. 34 (1986), 181-187. Zbl0604.47018
  10. [S] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, 1974. Zbl0296.47023
  11. [Y] J. A. Yorke, A certain example of nonnegative operators on the space of all integrable functions on [0,3], unpublished. 
  12. [ZKP] P. P. Zabreĭko, M. A. Krasnosel'skiĭ and Yu. V. Pokornyĭ, A certain class of positive linear operators, Funktsional. Anal. i Prilozhen. 5 (4) (1971), 9-17 (in Russian). 
  13. [Z] A. Zalewska-Mitura, A generalization of the lower bound function theorem for Markov operators, Univ. Iagell. Acta Math. 1994 (31), 79-85. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.