# Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice

Annales Polonici Mathematici (1998)

- Volume: 68, Issue: 1, page 1-16
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topJolanta Socała. "Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice." Annales Polonici Mathematici 68.1 (1998): 1-16. <http://eudml.org/doc/270372>.

@article{JolantaSocała1998,

abstract = {Asymptotic convergence theorems for nonnegative operators on Banach lattices, on $L^\{∞\}$, on C(X) and on $L^p(1 ≤ p < ∞)$ are proved. The general results are applied to a class of integral operators on L¹.},

author = {Jolanta Socała},

journal = {Annales Polonici Mathematici},

keywords = {nonnegative operator; exponentially stationary operator; integral operator; lower function; asymptotic convergence theorems; nonnegative operators on Banach lattices; integral operators},

language = {eng},

number = {1},

pages = {1-16},

title = {Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice},

url = {http://eudml.org/doc/270372},

volume = {68},

year = {1998},

}

TY - JOUR

AU - Jolanta Socała

TI - Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice

JO - Annales Polonici Mathematici

PY - 1998

VL - 68

IS - 1

SP - 1

EP - 16

AB - Asymptotic convergence theorems for nonnegative operators on Banach lattices, on $L^{∞}$, on C(X) and on $L^p(1 ≤ p < ∞)$ are proved. The general results are applied to a class of integral operators on L¹.

LA - eng

KW - nonnegative operator; exponentially stationary operator; integral operator; lower function; asymptotic convergence theorems; nonnegative operators on Banach lattices; integral operators

UR - http://eudml.org/doc/270372

ER -

## References

top- [A] H. Amann, Fixed point theorems and nonlinear eigenvalue problems, SIAM Rev. 18 (1976), 620-709.
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publ., New York, 1958.
- [LM] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. Zbl0606.58002
- [LR] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159. Zbl0676.47021
- [LY] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
- [LY1] A. Lasota and J. A. Yorke, When the long-time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221-240. Zbl0846.47005
- [ŁR] K. Łoskot and R. Rudnicki, Relative entropy and stability of stochastic semigroups, Ann. Polon. Math. 53 (1991), 139-145. Zbl0727.60035
- [N] R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, in: Fixed Point Theory, Proc. Conf. Sherbrooke, Lecture Notes Math. 886, Springer, 1980, 309-330.
- [R] R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Polish Acad. Sci. Math. 34 (1986), 181-187. Zbl0604.47018
- [S] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, 1974. Zbl0296.47023
- [Y] J. A. Yorke, A certain example of nonnegative operators on the space of all integrable functions on [0,3], unpublished.
- [ZKP] P. P. Zabreĭko, M. A. Krasnosel'skiĭ and Yu. V. Pokornyĭ, A certain class of positive linear operators, Funktsional. Anal. i Prilozhen. 5 (4) (1971), 9-17 (in Russian).
- [Z] A. Zalewska-Mitura, A generalization of the lower bound function theorem for Markov operators, Univ. Iagell. Acta Math. 1994 (31), 79-85.