A note on uniquely H-colourable graphs
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 1, page 39-44
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Bonato, A family of universal pseudo-homogeneous G-colourable graphs, Discrete Math. 247 (2002) 13-23, doi: 10.1016/S0012-365X(01)00158-3. Zbl0997.05032
- [2] A. Bonato, Homomorphisms and amalgamation, Discrete Math. 270 (2003) 32-41, doi: 10.1016/S0012-365X(02)00864-6.
- [3] K. Collins and B. Shemmer, Constructions of 3-colorable cores, SIAM J. Discrete Math. 16 (2002) 74-80, doi: 10.1137/S0895480101390898. Zbl1029.05050
- [4] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409. Zbl0664.05019
- [5] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colorable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4. Zbl0175.50205
- [6] P. Hell and J. Nesetril, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004), doi: 10.1093/acprof:oso/9780198528173.001.0001. Zbl1062.05139
- [7] J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. Zbl0949.05025
- [8] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discuss. Math. Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040. Zbl0905.05038
- [9] X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:1<33::AID-JGT3>3.0.CO;2-L Zbl0864.05037
- [10] X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory 30 (1999) 1-6, doi: 10.1002/(SICI)1097-0118(199901)30:1<1::AID-JGT1>3.0.CO;2-P