Graphs maximal with respect to hom-properties
Jan Kratochvíl; Peter Mihók; Gabriel Semanišin
Discussiones Mathematicae Graph Theory (1997)
- Volume: 17, Issue: 1, page 77-88
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJan Kratochvíl, Peter Mihók, and Gabriel Semanišin. "Graphs maximal with respect to hom-properties." Discussiones Mathematicae Graph Theory 17.1 (1997): 77-88. <http://eudml.org/doc/270745>.
@article{JanKratochvíl1997,
abstract = {For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.},
author = {Jan Kratochvíl, Peter Mihók, Gabriel Semanišin},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {hom-property of graphs; hereditary property of graphs; maximal graphs; homomorphisms; hom-properties; characterization},
language = {eng},
number = {1},
pages = {77-88},
title = {Graphs maximal with respect to hom-properties},
url = {http://eudml.org/doc/270745},
volume = {17},
year = {1997},
}
TY - JOUR
AU - Jan Kratochvíl
AU - Peter Mihók
AU - Gabriel Semanišin
TI - Graphs maximal with respect to hom-properties
JO - Discussiones Mathematicae Graph Theory
PY - 1997
VL - 17
IS - 1
SP - 77
EP - 88
AB - For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.
LA - eng
KW - hom-property of graphs; hereditary property of graphs; maximal graphs; homomorphisms; hom-properties; characterization
UR - http://eudml.org/doc/270745
ER -
References
top- [1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
- [2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. Zbl0902.05027
- [3] R.L. Graham, M. Grötschel and L. Lovász, Handbook of Combinatorics (Elsevier Science B.V. Amsterdam, 1995). Zbl0833.05001
- [4] P. Hell and J. Nešetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K. Zbl0803.68080
- [5] P. Hell and J. Nešetril, Complexity of H-coloring, J. Combin. Theory (B) 48 (1990) 92-110, doi: 10.1016/0095-8956(90)90132-J. Zbl0639.05023
- [6] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications New York, 1995).
- [7] J. Kratochví l and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors (submitted).
- [8] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002. Zbl0829.05057
- [9] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted). Zbl1055.05061
- [10] J. Nešetril, Graph homomorphisms and their structures, in: Proc. Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832. Zbl0858.05049
- [11] M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory vol. 2, (Academic Press, London, 1983) 161-200.
- [12] X. Zhou, Uniquely H-colourable graphs with large girth, J. Graph Theory 23 (1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:1<33::AID-JGT3>3.0.CO;2-L
Citations in EuDML Documents
top- Anthony Bonato, A note on uniquely H-colourable graphs
- Izak Broere, Marietjie Frick, Gabriel Semanišin, Maximal graphs with respect to hereditary properties
- Gabriel Semanišin, On some variations of extremal graph problems
- Amelie Berger, Izak Broere, Minimal reducible bounds for hom-properties of graphs
- Stefan A. Burr, Michael S. Jacobson, Peter Mihók, Gabriel Semanišin, Generalized ramsey theory and decomposable properties of graphs
- Peter Mihók, Jozef Miškuf, Gabriel Semanišin, On universal graphs for hom-properties
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.