Hedgehogs of constant width and equichordal points
Annales Polonici Mathematici (1997)
- Volume: 67, Issue: 3, page 285-288
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topYves Martinez-Maure. "Hedgehogs of constant width and equichordal points." Annales Polonici Mathematici 67.3 (1997): 285-288. <http://eudml.org/doc/270415>.
@article{YvesMartinez1997,
abstract = {We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.},
author = {Yves Martinez-Maure},
journal = {Annales Polonici Mathematici},
keywords = {convex body; hypersurface; pedal; equichordal; hedgehog; equichordal point; constant width},
language = {eng},
number = {3},
pages = {285-288},
title = {Hedgehogs of constant width and equichordal points},
url = {http://eudml.org/doc/270415},
volume = {67},
year = {1997},
}
TY - JOUR
AU - Yves Martinez-Maure
TI - Hedgehogs of constant width and equichordal points
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 285
EP - 288
AB - We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.
LA - eng
KW - convex body; hypersurface; pedal; equichordal; hedgehog; equichordal point; constant width
UR - http://eudml.org/doc/270415
ER -
References
top- [1] W. Blaschke, H. Rothe und R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917), 82.
- [2] M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916), 99-103. Zbl46.1117.01
- [3] P. J. Kelly, Curves with a kind of constant width, Amer. Math. Monthly 64 (1957), 333-336. Zbl0080.15602
- [4] V. Klee, Can a plane convex body have two equichordal points?, Amer. Math. Monthly 76 (1969), 54-55.
- [5] V. Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (3) (1979), 131-145. Zbl0418.51005
- [6] R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons ( Enveloppes paramétrées par leur application de Gauss), in: Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253. Zbl0658.53004
- [7] Y. Martinez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss), Bull. Sci. Math., to appear.
- [8] C. M. Petty and J. M. Crotty, Characterization of spherical neighborhoods, Canad. J. Math. 22 (1970), 431-435. Zbl0195.12603
- [9] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993. Zbl0798.52001
- [10] E. Wirsing, Zur Analytizität von Doppelspeichkurven, Arch. Math. (Basel) 9 (1958), 300-307. Zbl0083.38404
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.