Hedgehogs of constant width and equichordal points

Yves Martinez-Maure

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 285-288
  • ISSN: 0066-2216

Abstract

top
We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.

How to cite

top

Yves Martinez-Maure. "Hedgehogs of constant width and equichordal points." Annales Polonici Mathematici 67.3 (1997): 285-288. <http://eudml.org/doc/270415>.

@article{YvesMartinez1997,
abstract = {We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.},
author = {Yves Martinez-Maure},
journal = {Annales Polonici Mathematici},
keywords = {convex body; hypersurface; pedal; equichordal; hedgehog; equichordal point; constant width},
language = {eng},
number = {3},
pages = {285-288},
title = {Hedgehogs of constant width and equichordal points},
url = {http://eudml.org/doc/270415},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Yves Martinez-Maure
TI - Hedgehogs of constant width and equichordal points
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 285
EP - 288
AB - We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.
LA - eng
KW - convex body; hypersurface; pedal; equichordal; hedgehog; equichordal point; constant width
UR - http://eudml.org/doc/270415
ER -

References

top
  1. [1] W. Blaschke, H. Rothe und R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917), 82. 
  2. [2] M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916), 99-103. Zbl46.1117.01
  3. [3] P. J. Kelly, Curves with a kind of constant width, Amer. Math. Monthly 64 (1957), 333-336. Zbl0080.15602
  4. [4] V. Klee, Can a plane convex body have two equichordal points?, Amer. Math. Monthly 76 (1969), 54-55. 
  5. [5] V. Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (3) (1979), 131-145. Zbl0418.51005
  6. [6] R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons ( Enveloppes paramétrées par leur application de Gauss), in: Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253. Zbl0658.53004
  7. [7] Y. Martinez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss), Bull. Sci. Math., to appear. 
  8. [8] C. M. Petty and J. M. Crotty, Characterization of spherical neighborhoods, Canad. J. Math. 22 (1970), 431-435. Zbl0195.12603
  9. [9] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993. Zbl0798.52001
  10. [10] E. Wirsing, Zur Analytizität von Doppelspeichkurven, Arch. Math. (Basel) 9 (1958), 300-307. Zbl0083.38404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.