Uniqueness results for the Minkowski problem extended to hedgehogs
Open Mathematics (2012)
- Volume: 10, Issue: 2, page 440-450
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topYves Martinez-Maure. "Uniqueness results for the Minkowski problem extended to hedgehogs." Open Mathematics 10.2 (2012): 440-450. <http://eudml.org/doc/269570>.
@article{YvesMartinez2012,
abstract = {The classical Minkowski problem has a natural extension to hedgehogs, that is to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem is much more difficult since it essentially boils down to the question of solutions of certain Monge-Ampère equations of mixed type on the unit sphere $\mathbb \{S\}^n $ of ℝn+1. In this paper, we mainly consider the uniqueness question and give first results.},
author = {Yves Martinez-Maure},
journal = {Open Mathematics},
keywords = {Minkowski problem; Monge-Ampère equations; Convex surfaces; Hedgehogs; convex surfaces; hedgehogs},
language = {eng},
number = {2},
pages = {440-450},
title = {Uniqueness results for the Minkowski problem extended to hedgehogs},
url = {http://eudml.org/doc/269570},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Yves Martinez-Maure
TI - Uniqueness results for the Minkowski problem extended to hedgehogs
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 440
EP - 450
AB - The classical Minkowski problem has a natural extension to hedgehogs, that is to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem is much more difficult since it essentially boils down to the question of solutions of certain Monge-Ampère equations of mixed type on the unit sphere $\mathbb {S}^n $ of ℝn+1. In this paper, we mainly consider the uniqueness question and give first results.
LA - eng
KW - Minkowski problem; Monge-Ampère equations; Convex surfaces; Hedgehogs; convex surfaces; hedgehogs
UR - http://eudml.org/doc/269570
ER -
References
top- [1] Alexandrov A.D., On uniqueness theorems for closed surfaces, Dokl. Akad. Nauk SSSR, 1939, 22, 99–102 (in Russian)
- [2] Alexandrov A.D., On the curvature of surfaces, Vestnik Leningrad. Univ., 1966, 21(19), 5–11 (in Russian)
- [3] Berger M., A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-642-18245-7
- [4] Cheng S.Y., Yau S.T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 1976, 29(5), 495–516 http://dx.doi.org/10.1002/cpa.3160290504 Zbl0363.53030
- [5] Koutroufiotis D., On a conjectured characterization of the sphere, Math. Ann., 1973, 205(3), 211–217 http://dx.doi.org/10.1007/BF01349231 Zbl0257.53056
- [6] Langevin R., Levitt G., Rosenberg H., Hérissons et multihérissons (enveloppes parametrées par leur application de Gauss), Banach Center Publ., 1988, 20, 245–253 Zbl0658.53004
- [7] Lin C.S., The local isometric embedding in ℝ3 of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom., 1985, 21(2), 213–230 Zbl0584.53002
- [8] Martinez-Maure Y., Hedgehogs of constant width and equichordal points, Ann. Polon. Math., 1997, 67(3), 285–288 Zbl0926.52006
- [9] Martinez-Maure Y., Indice d’un hérisson: étude et applications, Publ. Mat., 2000, 44(1), 237–255 Zbl0974.53003
- [10] Martinez-Maure Y., Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris, 2001, 332(1), 41–44
- [11] Martinez-Maure Y., Hedgehogs and zonoids, Adv. Math., 2001, 158(1), 1–17 http://dx.doi.org/10.1006/aima.2000.1943 Zbl0977.52010
- [12] Martinez-Maure Y., Théorie des hérissons et polytopes, C. R. Acad. Sci. Paris, 2003, 336(3), 241–244
- [13] Martinez-Maure Y., Geometric study of Minkowski differences of plane convex bodies, Canad. J. Math., 2006, 58(6), 600–624 http://dx.doi.org/10.4153/CJM-2006-025-x Zbl1121.52014
- [14] Martinez-Maure Y., New notion of index for hedgehogs of ℝ3 and applications, European J. Combin., 2010, 31(4), 1037–1049 http://dx.doi.org/10.1016/j.ejc.2009.11.015 Zbl1196.52005
- [15] Minkowski H., Volumen und Oberfläche, Math. Ann., 1903, 57(4), 447–495 http://dx.doi.org/10.1007/BF01445180
- [16] Panina G., New counterexamples to A.D. Alexandrov’s hypothesis, Adv. Geom., 2005, 5(2), 301–317 http://dx.doi.org/10.1515/advg.2005.5.2.301 Zbl1077.52003
- [17] Pogorelov A.V., The Minkowski Multidimensional Problem, Scripta Series in Mathematics, John Wiley & Sons, New York-Toronto-London, 1978 Zbl0387.53023
- [18] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511526282 Zbl0798.52001
- [19] Stoker J.J., Differential Geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1989
- [20] Zuily C., Existence locale de solutions C ∞ pour des équations de Monge-Ampère changeant de type, Comm. Partial Differential Equations, 1989, 14(6), 691–697 http://dx.doi.org/10.1080/03605308908820627 Zbl0694.35034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.