On a semilinear elliptic eigenvalue problem

Mario Michele Coclite

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 289-295
  • ISSN: 0066-2216

Abstract

top
We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, u | Ω = 0 , where f(x) and h(u) satisfy minimal regularity assumptions.

How to cite

top

Mario Michele Coclite. "On a semilinear elliptic eigenvalue problem." Annales Polonici Mathematici 67.3 (1997): 289-295. <http://eudml.org/doc/270431>.

@article{MarioMicheleCoclite1997,
abstract = {We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, $u|_\{∂Ω\} = 0$, where f(x) and h(u) satisfy minimal regularity assumptions.},
author = {Mario Michele Coclite},
journal = {Annales Polonici Mathematici},
keywords = {semilinear elliptic equations; nonlinear boundary-value problems; positive solutions; supersolution and subsolution method},
language = {eng},
number = {3},
pages = {289-295},
title = {On a semilinear elliptic eigenvalue problem},
url = {http://eudml.org/doc/270431},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Mario Michele Coclite
TI - On a semilinear elliptic eigenvalue problem
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 289
EP - 295
AB - We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, $u|_{∂Ω} = 0$, where f(x) and h(u) satisfy minimal regularity assumptions.
LA - eng
KW - semilinear elliptic equations; nonlinear boundary-value problems; positive solutions; supersolution and subsolution method
UR - http://eudml.org/doc/270431
ER -

References

top
  1. [1] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, Math. Res. Center, Univ. of Wisconsin-Madison, Tech. Sum. Report #1446 (1974). 
  2. [2] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32. Zbl0476.35030
  3. [3] G. Bonanno, Semilinear elliptic eigenvalue problems, preprint, 1995. 
  4. [4] G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal. 8 (1996), 263-273. Zbl0891.35038
  5. [5] J. M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A 265 (1967), 333-336. Zbl0164.16803
  6. [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. 
  7. [7] K. J. Brown and H. Budin, Multiple positive solutions for a class of nonlinear boundary value problems, J. Math. Anal. Appl. 60 (1977), 329-338. Zbl0361.35023
  8. [8] M. M. Coclite, On a singular nonlinear Dirichlet problem. II, Boll. Un. Mat. Ital. B (7) 5 (1991), 955-975. Zbl0789.35057
  9. [9] M. M. Coclite, On a singular nonlinear Dirichlet problem. III, Nonlinear Anal. 21 (1993), 547-564. Zbl0799.35076
  10. [10] M. M. Coclite, On a singular nonlinear Dirichlet problem. IV, Nonlinear Anal. 23 (1994), 925-936. Zbl0814.35035
  11. [11] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207-218. Zbl0309.35057
  12. [12] S. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal. 17 (1986), 1359-1369. Zbl0614.35037
  13. [13] J. P. Keener and H. B. Keller, Positive solutions of convex nonlinear eigenvalue problems, J. Differential Equations 16 (1974), 103-125. Zbl0287.35074
  14. [14] H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376. Zbl0152.10401
  15. [15] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math.Soc. 272 (1982), 753-769. Zbl0589.35004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.