Distance perfectness of graphs
Discussiones Mathematicae Graph Theory (1999)
- Volume: 19, Issue: 1, page 31-43
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
- [2] C. Berge and P. Duchet, Strongly perfect graphs, Ann. Discrete Math. 21 (1984) 57-61.
- [3] A.L. Cai and D. Corneil, A generalization of perfect graphs - i-perfect graphs, J. Graph Theory 23 (1996) 87-103, doi: 10.1002/(SICI)1097-0118(199609)23:1<87::AID-JGT10>3.0.CO;2-H Zbl0857.05037
- [4] F. Kramer and H. Kramer, Un Probléme de coloration des sommets d'un gráphe, C.R. Acad. Sc. Paris, 268 Serie A (1969) 46-48. Zbl0165.57302
- [5] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, doi: 10.1016/0012-365X(72)90006-4. Zbl0239.05111
- [6] F. Maffray and M. Preissmann, Perfect graphs with no P₅ and no K₅, Graphs and Combin. 10 (1994) 173-184, doi: 10.1007/BF02986662. Zbl0806.05052
- [7] H. Müller, On edge perfectness and class of bipartite graphs, Discrete Math. 148 (1996) 159-187. Zbl0844.68095
- [8] G. Ravindra, Meyniel's graphs are strongly perfect, Ann. Discrete Math. 21 (1984) 145-148.