Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces
Hammouche Hadda; Guerbati Kaddour; Benchohra Mouffak; Abada Nadjat
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2013)
- Volume: 33, Issue: 2, page 149-170
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topHammouche Hadda, et al. "Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 33.2 (2013): 149-170. <http://eudml.org/doc/270480>.
@article{HammoucheHadda2013,
abstract = {In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.},
author = {Hammouche Hadda, Guerbati Kaddour, Benchohra Mouffak, Abada Nadjat},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {fractional calculus; caputo fractional derivative; multivalued map; differential inclusions; mild solution; fixed point},
language = {eng},
number = {2},
pages = {149-170},
title = {Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces},
url = {http://eudml.org/doc/270480},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Hammouche Hadda
AU - Guerbati Kaddour
AU - Benchohra Mouffak
AU - Abada Nadjat
TI - Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2013
VL - 33
IS - 2
SP - 149
EP - 170
AB - In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.
LA - eng
KW - fractional calculus; caputo fractional derivative; multivalued map; differential inclusions; mild solution; fixed point
UR - http://eudml.org/doc/270480
ER -
References
top- [1] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9
- [2] R.P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Adv. Stud. Contemp. Math. 16 (2008), 181-196.
- [3] A. Anguraj, P. Karthikeyan and G.M. N'Guérékata, Nonlocal Cauchy problem for some fractional abstract differential equations in Banach spaces, Commun. Math. Anal. 6 (2009).
- [4] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012.
- [5] M. Belmekki and M. Benchohra, Existence results for fractional order semilinear functional differential equations, Proc. A. Razmadze Math. Inst. 146 (2008), 9-20.
- [6] M. Belmekki, M. Benchohra and L. Górniewicz, Semilinear functional differential equations with fractional order and infinite delay, Fixed Point Th. 9 (2008), 423-439.
- [7] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008), 851-863. doi: 10.1080/00036810802307579
- [8] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021
- [9] M. Benchohra, S. Litimein and G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal. 92 (2013), 335-350. doi: 10.1080/00036811.2011.616496
- [10] C. Chen and M. Li, On fractional resolvent operator functions Semigroup Forum. 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7
- [11] C-Cuevas and J-C. de Souza, S-asymptotically W-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), 865-870. doi: 10.1016/j.aml.2008.07.013
- [12] C-Cuevas and J-C. de Souza, Existence of S-asymptotically W-periodic solutions of fractional order functional integro-differential equations with infinite delay, Nonlinear Anal. 72 (2010), 1680-1689. doi: 10.1016/j.na.2009.09.007
- [13] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8
- [14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [15] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- [16] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
- [17] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
- [18] M. Li and Q. Zheng, On spectral inclusions and approximations of α-times resolvent families, Semigroup Forum. 69 (2004), 356-368.
- [19] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [21] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- [22] V.E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.