On varieties of graphs
Discussiones Mathematicae Graph Theory (1998)
- Volume: 18, Issue: 2, page 209-223
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAlfonz Haviar, and Roman Nedela. "On varieties of graphs." Discussiones Mathematicae Graph Theory 18.2 (1998): 209-223. <http://eudml.org/doc/270513>.
@article{AlfonzHaviar1998,
abstract = {In this paper, we introduce the notion of a variety of graphs closed under isomorphic images, subgraph identifications and induced subgraphs (induced connected subgraphs) firstly and next closed under isomorphic images, subgraph identifications, circuits and cliques. The structure of the corresponding lattices is investigated.},
author = {Alfonz Haviar, Roman Nedela},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph; subgraph identification; variety; variety of graphs; subgraph identifications},
language = {eng},
number = {2},
pages = {209-223},
title = {On varieties of graphs},
url = {http://eudml.org/doc/270513},
volume = {18},
year = {1998},
}
TY - JOUR
AU - Alfonz Haviar
AU - Roman Nedela
TI - On varieties of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1998
VL - 18
IS - 2
SP - 209
EP - 223
AB - In this paper, we introduce the notion of a variety of graphs closed under isomorphic images, subgraph identifications and induced subgraphs (induced connected subgraphs) firstly and next closed under isomorphic images, subgraph identifications, circuits and cliques. The structure of the corresponding lattices is investigated.
LA - eng
KW - graph; subgraph identification; variety; variety of graphs; subgraph identifications
UR - http://eudml.org/doc/270513
ER -
References
top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discusiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
- [3] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981). Zbl0478.08001
- [4] G. Chartrand and L. Lesniak, Graphs & Digraphs, (third ed.) (Chapman & Hall, London, 1996). Zbl0890.05001
- [5] D. Duffus and I. Rival, A Structure Theory for Ordered Sets, Discrete Math. 35 (1981) 53-118, doi: 10.1016/0012-365X(81)90201-6.
- [6] R.P. Jones, Hereditary properties and P-chromatic numbers, in: Combinatorics, Proc. British Combin. Conf., Aberystwyth 1973, T.P. McDonough and V.C. Mavron, eds. (Cambridge Univ. Press, Cambridge, 1974) 83-88.
- [7] S. Klavžar and M. Petkovšek, Notes on hereditary classes of graphs, Preprint Ser. Dept. Math. University E.K., Ljubljana, 25 (1987) 206.
- [8] P. Mihók, On graphs critical with respect to generalized independence numbers, in: Colloquia Mathematica Societatis János Bolyai 52, Combinatorics 2 (1987) 417-421.
- [9] E.R. Scheinerman, On the structure of hereditary classes of graphs, Jour. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. Zbl0609.05057
- [10] C. Thomassen, Embeddings and minors, in: Handbook of combinatorics, R. Graham, M. Grötsches and L. Lovász, eds. (Elesevier Science B.V., 1965).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.