# On varieties of graphs

Discussiones Mathematicae Graph Theory (1998)

- Volume: 18, Issue: 2, page 209-223
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topAlfonz Haviar, and Roman Nedela. "On varieties of graphs." Discussiones Mathematicae Graph Theory 18.2 (1998): 209-223. <http://eudml.org/doc/270513>.

@article{AlfonzHaviar1998,

abstract = {In this paper, we introduce the notion of a variety of graphs closed under isomorphic images, subgraph identifications and induced subgraphs (induced connected subgraphs) firstly and next closed under isomorphic images, subgraph identifications, circuits and cliques. The structure of the corresponding lattices is investigated.},

author = {Alfonz Haviar, Roman Nedela},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {graph; subgraph identification; variety; variety of graphs; subgraph identifications},

language = {eng},

number = {2},

pages = {209-223},

title = {On varieties of graphs},

url = {http://eudml.org/doc/270513},

volume = {18},

year = {1998},

}

TY - JOUR

AU - Alfonz Haviar

AU - Roman Nedela

TI - On varieties of graphs

JO - Discussiones Mathematicae Graph Theory

PY - 1998

VL - 18

IS - 2

SP - 209

EP - 223

AB - In this paper, we introduce the notion of a variety of graphs closed under isomorphic images, subgraph identifications and induced subgraphs (induced connected subgraphs) firstly and next closed under isomorphic images, subgraph identifications, circuits and cliques. The structure of the corresponding lattices is investigated.

LA - eng

KW - graph; subgraph identification; variety; variety of graphs; subgraph identifications

UR - http://eudml.org/doc/270513

ER -

## References

top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discusiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
- [3] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981). Zbl0478.08001
- [4] G. Chartrand and L. Lesniak, Graphs & Digraphs, (third ed.) (Chapman & Hall, London, 1996). Zbl0890.05001
- [5] D. Duffus and I. Rival, A Structure Theory for Ordered Sets, Discrete Math. 35 (1981) 53-118, doi: 10.1016/0012-365X(81)90201-6.
- [6] R.P. Jones, Hereditary properties and P-chromatic numbers, in: Combinatorics, Proc. British Combin. Conf., Aberystwyth 1973, T.P. McDonough and V.C. Mavron, eds. (Cambridge Univ. Press, Cambridge, 1974) 83-88.
- [7] S. Klavžar and M. Petkovšek, Notes on hereditary classes of graphs, Preprint Ser. Dept. Math. University E.K., Ljubljana, 25 (1987) 206.
- [8] P. Mihók, On graphs critical with respect to generalized independence numbers, in: Colloquia Mathematica Societatis János Bolyai 52, Combinatorics 2 (1987) 417-421.
- [9] E.R. Scheinerman, On the structure of hereditary classes of graphs, Jour. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. Zbl0609.05057
- [10] C. Thomassen, Embeddings and minors, in: Handbook of combinatorics, R. Graham, M. Grötsches and L. Lovász, eds. (Elesevier Science B.V., 1965).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.