An inequality concerning edges of minor weight in convex 3-polytopes
Igor Fabrici; Stanislav Jendrol'
Discussiones Mathematicae Graph Theory (1996)
- Volume: 16, Issue: 1, page 81-87
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIgor Fabrici, and Stanislav Jendrol'. "An inequality concerning edges of minor weight in convex 3-polytopes." Discussiones Mathematicae Graph Theory 16.1 (1996): 81-87. <http://eudml.org/doc/270533>.
@article{IgorFabrici1996,
abstract = {Let $e_\{ij\}$ be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is $20e_\{3,3\} + 25e_\{3,4\} + 16e_\{3,5\} + 10e_\{3,6\} + 6[2/3]e_\{3,7\} + 5e_\{3,8\} + 2[1/2]e_\{3,9\} + 2e_\{3,10\} + 16[2/3]e_\{4,4\} + 11e_\{4,5\} + 5e_\{4,6\} + 1[2/3]e_\{4,7\} + 5[1/3]e_\{5,5\} + 2e_\{5,6\} ≥ 120$; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.},
author = {Igor Fabrici, Stanislav Jendrol'},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {planar graph; convex 3-polytope; normal map; edge weights; planar maps; normal planar map; 3-connected planar map; Kotzig's theorem; Steinitz's theorem},
language = {eng},
number = {1},
pages = {81-87},
title = {An inequality concerning edges of minor weight in convex 3-polytopes},
url = {http://eudml.org/doc/270533},
volume = {16},
year = {1996},
}
TY - JOUR
AU - Igor Fabrici
AU - Stanislav Jendrol'
TI - An inequality concerning edges of minor weight in convex 3-polytopes
JO - Discussiones Mathematicae Graph Theory
PY - 1996
VL - 16
IS - 1
SP - 81
EP - 87
AB - Let $e_{ij}$ be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is $20e_{3,3} + 25e_{3,4} + 16e_{3,5} + 10e_{3,6} + 6[2/3]e_{3,7} + 5e_{3,8} + 2[1/2]e_{3,9} + 2e_{3,10} + 16[2/3]e_{4,4} + 11e_{4,5} + 5e_{4,6} + 1[2/3]e_{4,7} + 5[1/3]e_{5,5} + 2e_{5,6} ≥ 120$; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.
LA - eng
KW - planar graph; convex 3-polytope; normal map; edge weights; planar maps; normal planar map; 3-connected planar map; Kotzig's theorem; Steinitz's theorem
UR - http://eudml.org/doc/270533
ER -
References
top- [1] O. V. Borodin, Computing light edges in planar graphs, in: R. Bodendiek, R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 137-144. Zbl0705.05023
- [2] O. V. Borodin, Structural properties and colorings of plane graphs, Ann. Discrete Math. 51 (1992) 31-37, doi: 10.1016/S0167-5060(08)70602-2. Zbl0765.05043
- [3] O. V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142. Zbl0767.05039
- [4] O. V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108. Zbl0776.05035
- [5] O. V. Borodin and D. P. Sanders, On light edges and triangles in planar graph of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103. Zbl0813.05020
- [6] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716. Zbl0265.05103
- [7] B. Grünbaum, Polytopal graphs, in: D. R. Fulkerson, ed., Studies in Graph Theory, MAA Studies in Mathematics 12 (1975) 201-224. Zbl0323.05104
- [8] B. Grünbaum, New views on some old questions of combinatorial geometry, Int. Teorie Combinatorie, Rome, 1973, 1 (1976) 451-468.
- [9] B. Grünbaum and G. C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140. Zbl0504.05026
- [10] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9. Zbl0773.05066
- [11] J. Ivančo and S. Jendrol', On extremal problems concerning weights of edges of graphs, in: Coll. Math. Soc. J. Bolyai, 60. Sets, Graphs and Numbers, Budapest (Hungary) 1991 (North Holland, 1993) 399-410.
- [12] E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 3 (1974) 233-237, doi: 10.1007/BF00183214. Zbl0297.52006
- [13] E. Jucovič, Convex 3-polytopes (Veda, Bratislava, 1981, Slovak).
- [14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. as. SAV (Math. Slovaca) 5 (1955) 101-103 (Slovak; Russian summary).
- [15] A. Kotzig, From the theory of Euler's polyhedra, Mat. as. (Math. Slovaca) 13 (1963) 20-34 (Russian). Zbl0134.19601
- [16] O. Ore, The four-color problem (Academic Press, New York, 1967). Zbl0149.21101
- [17] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013. Zbl0524.05031
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.