Precise lower bound for the number of edges of minor weight in planar maps
Mathematica Slovaca (1992)
- Volume: 42, Issue: 2, page 129-142
- ISSN: 0139-9918
Access Full Article
topHow to cite
topBorodin, Oleg V.. "Precise lower bound for the number of edges of minor weight in planar maps." Mathematica Slovaca 42.2 (1992): 129-142. <http://eudml.org/doc/34328>.
@article{Borodin1992,
author = {Borodin, Oleg V.},
journal = {Mathematica Slovaca},
keywords = {minor weight; edge weight; minor vertex; planar map; number of edges},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Precise lower bound for the number of edges of minor weight in planar maps},
url = {http://eudml.org/doc/34328},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Borodin, Oleg V.
TI - Precise lower bound for the number of edges of minor weight in planar maps
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 2
SP - 129
EP - 142
LA - eng
KW - minor weight; edge weight; minor vertex; planar map; number of edges
UR - http://eudml.org/doc/34328
ER -
References
top- BORODIN O. V., On the total coloring of planar graphs., J. Reine Angew. Math. 394 (1989), 180-185. (1989) Zbl0653.05029MR0977440
- JUCOVIČ E., Strengthening of a theorem about 3 -polytopes, Geom. Dedicata 13 (1974), 233-237. (1974) Zbl0297.52006MR0348629
- KOTZIG A., Contribution to the theory of Eulerian polyhedra, (Slovak), Mat.-Fyz. Čas. (Math. Slovaca) 5 (1955), 101-113. (1955) MR0074837
- STEINITZ K., Polyeder und Raumcinteilungen, Encyklop. d. math. Wissensch. 3 (1922), 1-139. (1922)
- Teoria Combinatoria, Proc. Intern. Colloq. Rome 1973, Accademia nacionále dei lincei, Roma, 1976. (1973)
Citations in EuDML Documents
top- Igor Fabrici, Stanislav Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes
- Stanislav Jendroľ, Paths with restricted degrees of their vertices in planar graphs
- Mirko Horňák, Stanislav Jendrol, Unavoidable set of face types for planar maps
- Dávid Hudák, Peter Šugerek, Light edges in 1-planar graphs with prescribed minimum degree
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.