Three edge-coloring conjectures

Richard H. Schelp

Discussiones Mathematicae Graph Theory (2002)

  • Volume: 22, Issue: 1, page 173-182
  • ISSN: 2083-5892

Abstract

top
The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.

How to cite

top

Richard H. Schelp. "Three edge-coloring conjectures." Discussiones Mathematicae Graph Theory 22.1 (2002): 173-182. <http://eudml.org/doc/270546>.

@article{RichardH2002,
abstract = {The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.},
author = {Richard H. Schelp},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {edge-coloring; Ramsey number; vertex-distinguishing edge-coloring; strong chromatic index; balanced edge-coloring; local coloring; mean coloring},
language = {eng},
number = {1},
pages = {173-182},
title = {Three edge-coloring conjectures},
url = {http://eudml.org/doc/270546},
volume = {22},
year = {2002},
}

TY - JOUR
AU - Richard H. Schelp
TI - Three edge-coloring conjectures
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 1
SP - 173
EP - 182
AB - The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.
LA - eng
KW - edge-coloring; Ramsey number; vertex-distinguishing edge-coloring; strong chromatic index; balanced edge-coloring; local coloring; mean coloring
UR - http://eudml.org/doc/270546
ER -

References

top
  1. [1] M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings, in: Combinatorics 90, A. Barlotti et al, eds. (Elsevier Science Pub., New York, 1992), 1-9. 
  2. [2] P.N. Balister, Packing circuits in Kₙ, Combinatorics, Probability and Computing 10 (2001) 463-499, doi: 10.1017/S0963548301004771. Zbl1113.05309
  3. [3] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-distinguishing colorings of graphs with Δ(G) = 2, (to appear in Discrete Mathematics). Zbl1005.05019
  4. [4] P.N. Balister, A. Kostochka, Hao Li and R.H. Schelp, Balanced edge colorings, preprint. 
  5. [5] P.N. Balister, O.M. Riordan, R.H. Schelp, Vertex-distinguishing edge colorings of graphs, (to appear in J. Graph Theory). Zbl1008.05067
  6. [6] C. Bazgan, A. Harket-Benhamdine, Hao Li and Mariusz Woźniak, On the vertex-distinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 74 (1999) 288-301, doi: 10.1006/jctb.1998.1884. Zbl0932.05036
  7. [7] B. Bollobás, A. Kostochka and R.H. Schelp, Local and mean Ramsey numbers for trees, J. Combin. Theory (B) 79 (2000) 100-103, doi: 10.1006/jctb.2000.1950. Zbl1028.05068
  8. [8] A.C. Burris, Vertex-distinguishing edge-colorings, Ph.D. Dissertation (Memphis State University, August 1993). Zbl0886.05068
  9. [9] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (2) (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C Zbl0886.05068
  10. [10] P. Erdős and V.T. Sós, Some Remarks on Ramsey's and Turán's theorems, in: P. Erdoos et al eds., Comb. Theory and Appl., Proc. Colloq. Math. Soc. János Bolyai 4, Balatonfüred, 1969 (North-Holland, Amsterdam, 1970) 395-404. 
  11. [11] Y. Caro, On several variations of the Turan and Ramsey numbers, J. Graph Theory 16 (1992) 257-266, doi: 10.1002/jgt.3190160309. Zbl0760.05066
  12. [12] Y. Caro and Zs. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Quart. J. Math. Oxford 44 (2) (1993) 385-398, doi: 10.1093/qmath/44.4.385. 
  13. [13] J. Cerńy, M. Hornák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31. Zbl0853.05040
  14. [14] R.A. Clapsadle, Polychromatic structures and substructures in edge-colorings of graphs, Ph. D. Dissertation (University of Memphis, 1994). 
  15. [15] R.A. Clapsadle and R.H. Schelp, Local edge-colorings that are global, J. Graph Theory 18 (1994) 389-399, doi: 10.1002/jgt.3190180409. Zbl0813.05027
  16. [16] O. Favaron, Hao Li and R.H. Schelp, Strong edge-colorings of graphs, Discrete Math. 159 (1996) 103-109, doi: 10.1016/0012-365X(95)00102-3. Zbl0859.05042
  17. [17] A. Galluccio, M. Simonovits and G. Simonyi, On the structure of co-critical graphs, in: Proc. of Graph Theory, Combinatorics, and Computing (Kalamazoo, MI) 2 (1995) 1053-1071. Zbl0843.05041
  18. [18] A. Gyárfás, J. Lehel, R.H. Schelp and Zs. Tuza, Ramsey numbers for local colorings, Graphs and Combinatorics 3 (1987) 267-277, doi: 10.1007/BF01788549. Zbl0621.05023
  19. [19] M. Hornák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301. Zbl0841.05032
  20. [20] M. Hornák and R. Soták, Asymptotic behavior of the observability of Qₙ, preprint. Zbl0890.05028
  21. [21] R.H. Schelp, Local and mean k-Ramsey numbers for the complete graph, J. Graph Theory 24 (1997) 201-203, doi: 10.1002/(SICI)1097-0118(199703)24:3<201::AID-JGT1>3.0.CO;2-T Zbl0878.05060
  22. [22] M. Truszcznyński, Generalized local colorings of graphs, J. Combin Theory (B) 54 (1992) 178-188, doi: 10.1016/0095-8956(92)90049-4. Zbl0769.05041
  23. [23] M. Truszcyński and Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs and Combinatorics 3 (1987) 67-73. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.