Three edge-coloring conjectures
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 1, page 173-182
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings, in: Combinatorics 90, A. Barlotti et al, eds. (Elsevier Science Pub., New York, 1992), 1-9.
- [2] P.N. Balister, Packing circuits in Kₙ, Combinatorics, Probability and Computing 10 (2001) 463-499, doi: 10.1017/S0963548301004771. Zbl1113.05309
- [3] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-distinguishing colorings of graphs with Δ(G) = 2, (to appear in Discrete Mathematics). Zbl1005.05019
- [4] P.N. Balister, A. Kostochka, Hao Li and R.H. Schelp, Balanced edge colorings, preprint.
- [5] P.N. Balister, O.M. Riordan, R.H. Schelp, Vertex-distinguishing edge colorings of graphs, (to appear in J. Graph Theory). Zbl1008.05067
- [6] C. Bazgan, A. Harket-Benhamdine, Hao Li and Mariusz Woźniak, On the vertex-distinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 74 (1999) 288-301, doi: 10.1006/jctb.1998.1884. Zbl0932.05036
- [7] B. Bollobás, A. Kostochka and R.H. Schelp, Local and mean Ramsey numbers for trees, J. Combin. Theory (B) 79 (2000) 100-103, doi: 10.1006/jctb.2000.1950. Zbl1028.05068
- [8] A.C. Burris, Vertex-distinguishing edge-colorings, Ph.D. Dissertation (Memphis State University, August 1993). Zbl0886.05068
- [9] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (2) (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C Zbl0886.05068
- [10] P. Erdős and V.T. Sós, Some Remarks on Ramsey's and Turán's theorems, in: P. Erdoos et al eds., Comb. Theory and Appl., Proc. Colloq. Math. Soc. János Bolyai 4, Balatonfüred, 1969 (North-Holland, Amsterdam, 1970) 395-404.
- [11] Y. Caro, On several variations of the Turan and Ramsey numbers, J. Graph Theory 16 (1992) 257-266, doi: 10.1002/jgt.3190160309. Zbl0760.05066
- [12] Y. Caro and Zs. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Quart. J. Math. Oxford 44 (2) (1993) 385-398, doi: 10.1093/qmath/44.4.385.
- [13] J. Cerńy, M. Hornák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31. Zbl0853.05040
- [14] R.A. Clapsadle, Polychromatic structures and substructures in edge-colorings of graphs, Ph. D. Dissertation (University of Memphis, 1994).
- [15] R.A. Clapsadle and R.H. Schelp, Local edge-colorings that are global, J. Graph Theory 18 (1994) 389-399, doi: 10.1002/jgt.3190180409. Zbl0813.05027
- [16] O. Favaron, Hao Li and R.H. Schelp, Strong edge-colorings of graphs, Discrete Math. 159 (1996) 103-109, doi: 10.1016/0012-365X(95)00102-3. Zbl0859.05042
- [17] A. Galluccio, M. Simonovits and G. Simonyi, On the structure of co-critical graphs, in: Proc. of Graph Theory, Combinatorics, and Computing (Kalamazoo, MI) 2 (1995) 1053-1071. Zbl0843.05041
- [18] A. Gyárfás, J. Lehel, R.H. Schelp and Zs. Tuza, Ramsey numbers for local colorings, Graphs and Combinatorics 3 (1987) 267-277, doi: 10.1007/BF01788549. Zbl0621.05023
- [19] M. Hornák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301. Zbl0841.05032
- [20] M. Hornák and R. Soták, Asymptotic behavior of the observability of Qₙ, preprint. Zbl0890.05028
- [21] R.H. Schelp, Local and mean k-Ramsey numbers for the complete graph, J. Graph Theory 24 (1997) 201-203, doi: 10.1002/(SICI)1097-0118(199703)24:3<201::AID-JGT1>3.0.CO;2-T Zbl0878.05060
- [22] M. Truszcznyński, Generalized local colorings of graphs, J. Combin Theory (B) 54 (1992) 178-188, doi: 10.1016/0095-8956(92)90049-4. Zbl0769.05041
- [23] M. Truszcyński and Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs and Combinatorics 3 (1987) 67-73.