# Commutators of diffeomorphisms of a manifold with boundary

Annales Polonici Mathematici (1998)

- Volume: 68, Issue: 3, page 199-210
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topTomasz Rybicki. "Commutators of diffeomorphisms of a manifold with boundary." Annales Polonici Mathematici 68.3 (1998): 199-210. <http://eudml.org/doc/270572>.

@article{TomaszRybicki1998,

abstract = {A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on $C^r$-diffeomorphisms are included.},

author = {Tomasz Rybicki},

journal = {Annales Polonici Mathematici},

keywords = {Group of diffeomorphisms; simplicity; perfectness; manifold with boundary; fixed point theory; group of diffeomorphisms of a smooth manifold},

language = {eng},

number = {3},

pages = {199-210},

title = {Commutators of diffeomorphisms of a manifold with boundary},

url = {http://eudml.org/doc/270572},

volume = {68},

year = {1998},

}

TY - JOUR

AU - Tomasz Rybicki

TI - Commutators of diffeomorphisms of a manifold with boundary

JO - Annales Polonici Mathematici

PY - 1998

VL - 68

IS - 3

SP - 199

EP - 210

AB - A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on $C^r$-diffeomorphisms are included.

LA - eng

KW - Group of diffeomorphisms; simplicity; perfectness; manifold with boundary; fixed point theory; group of diffeomorphisms of a smooth manifold

UR - http://eudml.org/doc/270572

ER -

## References

top- [1] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227. Zbl0393.58007
- [2] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173. Zbl0205.28201
- [3] D. B. A. Epstein, Commutators of ${C}^{\infty}$-diffeomorphisms, Comment. Math. Helv. 59 (1984), 111-122. Zbl0535.58007
- [4] K. Fukui, Homologies of the group $Dif{f}^{\infty}(\mathbb{R}\u207f,0)$ and its subgroups, J. Math. Kyoto Univ. 20 (1980), 475-487. Zbl0476.57016
- [5] M. R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier (Grenoble) 23 (2) (1973), 75-86.
- [6] A. Masson, Sur la perfection du groupe des difféomorphismes d'une variété à bord infiniment tangents à l'identité sur le bord, C. R. Acad. Sci. Paris Sér. A 285 (1977), 837-839. Zbl0409.58010
- [7] J. N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. I 49 (1974), 512-528; II 50 (1975), 33-40; III 60 (1985), 122-124. Zbl0289.57014
- [8] J. Palis and S. Smale, Structural stability theorems, in: Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 223-231. Zbl0214.50702
- [9] T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect, Monatsh. Math. 120 (1995), 289-305. Zbl0847.57033
- [10] L. Schwartz, Analyse Mathématique, Hermann, Paris 1967.
- [11] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253-275. Zbl0327.58004
- [12] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307. Zbl0295.57014

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.