On the first homology of automorphism groups of manifolds with geometric structures

Kōjun Abe; Kazuhiko Fukui

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 516-528
  • ISSN: 2391-5455

Abstract

top
Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.

How to cite

top

Kōjun Abe, and Kazuhiko Fukui. "On the first homology of automorphism groups of manifolds with geometric structures." Open Mathematics 3.3 (2005): 516-528. <http://eudml.org/doc/268694>.

@article{KōjunAbe2005,
abstract = {Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.},
author = {Kōjun Abe, Kazuhiko Fukui},
journal = {Open Mathematics},
keywords = {47S05; 58D05; 58H10},
language = {eng},
number = {3},
pages = {516-528},
title = {On the first homology of automorphism groups of manifolds with geometric structures},
url = {http://eudml.org/doc/268694},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Kōjun Abe
AU - Kazuhiko Fukui
TI - On the first homology of automorphism groups of manifolds with geometric structures
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 516
EP - 528
AB - Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.
LA - eng
KW - 47S05; 58D05; 58H10
UR - http://eudml.org/doc/268694
ER -

References

top
  1. [1] K. Abe and K. Fukui: “On commutators of equivariant diffeomorphisms”, Proc. Japan Acad., Vol. 54, (1978), pp. 52–54. http://dx.doi.org/10.3792/pjaa.54.52 Zbl0398.57032
  2. [2] K. Abe and K. Fukui: “On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit”, Topology, Vol. 40, (2001), pp. 1325–1337. http://dx.doi.org/10.1016/S0040-9383(00)00014-8 Zbl1001.58003
  3. [3] K. Abe and K. Fukui: “On the structure of the group of Lipschitz homeomorphisms and its subgroups”, J. Math. Soc. Japan, Vol. 53(3), (2001), pp. 501–511. Zbl0997.58003
  4. [4] K. Abe and K. Fukui: “On the structure of the group of Lipschitz homeomorphisms and its subgroups II”, J. Math. Soc. Japan, Vol. 55(4), (2003), pp. 947–956. Zbl1043.58003
  5. [5] K. Abe and K. Fukui: “On the first homology of the group of equivariant diffeomorphisms and its applications”, preprint. Zbl1145.58005
  6. [6] K. Abe and K. Fukui: “On the structure of the group of diffeomorphisms of manifolds with boundary and its applications”, preprint. Zbl1001.58003
  7. [7] K. Abe, K. Fukui and T. Miura: “On the first homology of the group of equivariant Lipschitz homeomorphisms”, preprint. Zbl1101.58008
  8. [8] A. Banyaga: “On the structure of the group of equivariant diffeomorphisms”, Topology, Vol. 16, (1977), pp. 279–283. http://dx.doi.org/10.1016/0040-9383(77)90009-X 
  9. [9] A. Banyaga; The structure of classical diffeomorphism groups, Mathematics and its Applications, Vol. 400, Kluwer Academic Publishers, Dordrecht, 1997. Zbl0874.58005
  10. [10] E. Bierstone: “The Structure of Orbit Spaces and the Singularities of Equivariant Mappings”, Instituto de Mathematica Pura e Aplicada, Rio de Janeiro, 1980. Zbl0501.57001
  11. [11] B. Bredon: Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972. 
  12. [12] D.B.A. Epstein: “The simplicity of certain groups of homeomorphisms”, Compocio Math., Vol. 22, (1970), pp. 165–173. Zbl0205.28201
  13. [13] D.B.A. Epstein: “Foliations with all leaves compact”, Ann. Inst. Fourier, Grenoble, Vol. 26, (1976), pp. 265–282. Zbl0313.57017
  14. [14] D.B.A. Epstein: “Commutators of C ∞-diffeomorphisms”, Appendix to: John N. Mather: “gA curious remark concerning the geometric transfer map”, Comment. Math. Helv., Vol. 59, (1984), pp. 111–122. Zbl0535.58007
  15. [15] K. Fukui: “Homologies of Dif f ∞(R n , 0) ant its subgroups”, J. Math. Kyoto Univ., Vol. 20, (1980), pp. 457–487. 
  16. [16] K. Fukui: “Commutators of foliation preserving homeomorphisms for certain compact foliations”, Publ. RIMS Kyoto Univ., Vol. 34(1), (1998), pp. 65–73. http://dx.doi.org/10.2977/prims/1195144828 Zbl0965.57032
  17. [17] K. Fukui and H. Imanishi: “On commutators of foliation preserving homeomorphisms”, J. Math. Soc. Japan, Vol. 51(1), (1999), pp. 227–236. Zbl0928.57034
  18. [18] K. Fukui and H. Imanishi: “On commutators of foliation preserving Lipschitz homeomorphisms“; J. Math. Kyoto Univ., Vol. 41 (3), (2001), pp. 507–515. Zbl1012.58005
  19. [19] K. Fukui and T. Nakamura: “A topological property of Lipschitz mappings”, Topol. Appl., Vol. 148, (2005), pp. 143–152. http://dx.doi.org/10.1016/j.topol.2004.08.005 Zbl1063.58006
  20. [20] K. Fukui and S. Ushiki: “On the homotopy type of F Dif f(S 3, F R )”, J. Math. Kyoto Univ., Vol. 15(1), (1975), pp. 201–210. Zbl0302.57008
  21. [21] M. Hermann: “Simplicité du groupe des difféomorphismes de class C ∞, isotopes á l'identité, du tore de dimension n” C. R. Acad. Sci. Pari Sér. A-B, Vol. 273, (1971), pp. 232–234. Zbl0217.49602
  22. [22] M. Hermann: “Sur la conjugasion différentiable des difféomorphismes du cercle á des rotations”, Publ. I.H.E.S., Vol. 49, (1979), pp. 5–233. 
  23. [23] F. Hirzebruch and K.H. Mayer: O(n)-Manigfaltigkeiten, exotische Sphären und Singularitäten, Springer Lecture Notes, Vol. 57, 1968. Zbl0172.25304
  24. [24] H. Imanishi: “On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy”, J. Math. Kyoto Univ., Vol. 14, (1974), pp. 607–634. Zbl0296.57006
  25. [25] J. Luukkainen and J. Väisälä: “Elements of Lipschitz topology”, Ann. Acad. Sci. Fennicae, Ser. A.I. Math., Vol. 3, (1977), pp. 85–122. Zbl0397.57011
  26. [26] J.N. Mather: “Commutators of diffeomorphisms I and II”, Comment. Math. Helv., Vol. 49, (1992), pp. 512–528; Vol. 50, (1975), pp. 33–40. Zbl0289.57014
  27. [27] T. Rybicki: “The identity component of the leaf preserving diffeomorphism group is perfect”, Monatsh. Math., Vol. 120, (1995), pp. 289–305. http://dx.doi.org/10.1007/BF01294862 Zbl0847.57033
  28. [28] T. Rybicki: “Commutators of diffeomorphisms of a manifold with boundary”, Ann. Polon. Math., Vol. 68(3), (1998), pp. 199–210. Zbl0907.57022
  29. [29] G.W. Schwarz: “Smooth invariant functions under the action of a compact Lie group”, Topology, Vol. 14, (1975), pp. 63–68. http://dx.doi.org/10.1016/0040-9383(75)90036-1 
  30. [30] G.W. Schwarz: “Lifting smooth homotopies of orbit spaces”, Inst. Hautes Etudes Sci. Publ. Math., Vol. 51, (1980), pp. 37–135. Zbl0449.57009
  31. [31] R. Strub: “Local classification of quotients of smooth manifolds by discontinuous groups”, Math. Zeitschrift, Vol. 179, (1982), pp. 43–57. http://dx.doi.org/10.1007/BF01173913 Zbl0458.57029
  32. [32] S. Sternberg: “Local contractions and a theorem of Poincaré”, Amer. Jour. of Math., Vol. 79, (1957), pp. 809–823. http://dx.doi.org/10.2307/2372437 Zbl0080.29902
  33. [33] S. Sternberg: “The structure of local homeomorphisms, II”, Amer. Jour. of Math., Vol. 80, (1958), pp. 623–632. http://dx.doi.org/10.2307/2372774 
  34. [34] W. Thurston: “Foliations and group of diffeomorphisms”, Bull. Amer. Math. Soc., Vol. 80, (1974), pp. 304–307. http://dx.doi.org/10.1090/S0002-9904-1974-13475-0 Zbl0295.57014
  35. [35] T. Tsuboi: “On the group of foliation preserving diffeomorphisms”, preprint. Zbl1222.57031
  36. [36] J.H.C. Whitehead: “Manifolds with transverse fields in euclidean space”, Ann. of Math., Vol. 73(2), (1961), pp. 154–212. http://dx.doi.org/10.2307/1970286 Zbl0096.37802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.