Pancyclism and small cycles in graphs
Ralph Faudree; Odile Favaron; Evelyne Flandrin; Hao Li
Discussiones Mathematicae Graph Theory (1996)
- Volume: 16, Issue: 1, page 27-40
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131, doi: 10.1016/0012-365X(91)90361-5. Zbl0727.05039
- [2] A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180, doi: 10.1016/0095-8956(87)90038-4. Zbl0613.05038
- [3] J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5. Zbl0183.52301
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976). Zbl1226.05083
- [5] R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494, doi: 10.1002/jgt.3190170406. Zbl0782.05046
- [6] E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34, doi: 10.1016/0095-8956(74)90043-4. Zbl0268.05120
- [7] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5. Zbl0607.05050
- [8] R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication. Zbl0729.05031