A note on a new condition implying pancyclism
Evelyne Flandrin; Hao Li; Antoni Marczyk; Mariusz Woźniak
Discussiones Mathematicae Graph Theory (2001)
- Volume: 21, Issue: 1, page 137-143
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topEvelyne Flandrin, et al. "A note on a new condition implying pancyclism." Discussiones Mathematicae Graph Theory 21.1 (2001): 137-143. <http://eudml.org/doc/270348>.
@article{EvelyneFlandrin2001,
	abstract = {We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) < n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to $K_\{n/2,n/2\}$.},
	author = {Evelyne Flandrin, Hao Li, Antoni Marczyk, Mariusz Woźniak},
	journal = {Discussiones Mathematicae Graph Theory},
	keywords = {hamiltonian graphs; pancyclic graphs; cycles; Hamiltonian; pancyclic},
	language = {eng},
	number = {1},
	pages = {137-143},
	title = {A note on a new condition implying pancyclism},
	url = {http://eudml.org/doc/270348},
	volume = {21},
	year = {2001},
}
TY  - JOUR
AU  - Evelyne Flandrin
AU  - Hao Li
AU  - Antoni Marczyk
AU  - Mariusz Woźniak
TI  - A note on a new condition implying pancyclism
JO  - Discussiones Mathematicae Graph Theory
PY  - 2001
VL  - 21
IS  - 1
SP  - 137
EP  - 143
AB  - We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) < n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to $K_{n/2,n/2}$.
LA  - eng
KW  - hamiltonian graphs; pancyclic graphs; cycles; Hamiltonian; pancyclic
UR  - http://eudml.org/doc/270348
ER  - 
References
top- [1] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5. Zbl0183.52301
- [2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9. Zbl0331.05138
- [3] J.A. Bondy and U.S.A. Murty, Graph Theory with Applications (Elsevier, North Holland, New York, 1976).
- [4] V. Chvátal, On Hamilton's ideals, J. Combin. Theory 12 (B) (1972) 163-168. Zbl0213.50803
- [5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. Zbl0047.17001
- [6] G.H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory (B) 37 (1984) 221-227, doi: 10.1016/0095-8956(84)90054-6. Zbl0551.05048
- [7] R. Faudree, O. Favaron, E. Flandrin and H. Li, Pancyclism and small cycles in graphs, Discuss. Math. Graph Theory 16 (1996) 27-40, doi: 10.7151/dmgt.1021. Zbl0879.05042
- [8] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
- [9] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5. Zbl0607.05050
- [10] Z. Skupień, private communication.
- [11] R. Zhu, Circumference in 2-connected graphs, Qu-Fu Shiyuan Xuebao 4 (1983) 8-9.
- [12] L. Zhenhong, G. Jin and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290. Zbl0788.05059
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 