# On normal partitions in cubic graphs

Jean-Luc Fouquet; Jean-Marie Vanherpe

Discussiones Mathematicae Graph Theory (2009)

- Volume: 29, Issue: 2, page 293-312
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topJean-Luc Fouquet, and Jean-Marie Vanherpe. "On normal partitions in cubic graphs." Discussiones Mathematicae Graph Theory 29.2 (2009): 293-312. <http://eudml.org/doc/270604>.

@article{Jean2009,

abstract = {A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.},

author = {Jean-Luc Fouquet, Jean-Marie Vanherpe},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {cubic graph; edge-partition},

language = {eng},

number = {2},

pages = {293-312},

title = {On normal partitions in cubic graphs},

url = {http://eudml.org/doc/270604},

volume = {29},

year = {2009},

}

TY - JOUR

AU - Jean-Luc Fouquet

AU - Jean-Marie Vanherpe

TI - On normal partitions in cubic graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2009

VL - 29

IS - 2

SP - 293

EP - 312

AB - A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.

LA - eng

KW - cubic graph; edge-partition

UR - http://eudml.org/doc/270604

ER -

## References

top- [1] J.A. Bondy, Basic graph theory: Paths and circuits, in: M. Grötschel, R.L. Graham and L. Lovász, eds, Handbook of Combinatorics, vol. 1, pages 3-112 (Elsevier, North-Holland, 1995). Zbl0849.05044
- [2] A. Bouchet and J.L. Fouquet, Trois types de décompositions d'un graphe chaînes, Annals of Discrete Math. 17 (1983) 131-141. Zbl0537.05052
- [3] G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory (B) 61 (1994) 133-138, doi: 10.1006/jctb.1994.1039. Zbl0811.05053
- [4] L. Goddyn, Cones, lattices and Hilbert base of circuits and perfect matching, in: N. Robertson and P. Seymour, eds, Graph Structure Theory, Contemporary Mathematics Volume 147, pages 419-439 (American Mathematical Society, 1993), doi: 10.1090/conm/147/01189.
- [5] R. Halin, A theorem on n-connected graphs, J. Combin. Theory (1969) 150-154. Zbl0172.25803
- [6] J.M. Vanherpe, J.L. Fouquet, H. Thuillier and A.P. Wojda, On odd and semi-odd linear partitions of cubic graphs, preprint, 2006. Zbl1193.05130
- [7] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465, doi: 10.1007/BF01456961.
- [8] A. Kotzig, Moves without forbidden transitions, Mat.-Fyz. Casopis 18 (1968) 76-80, MR 39#4038. Zbl0155.31901
- [9] H. Li, Perfect path double covers in every simple graphs, J. Graph. Theory 14 (1990) 645-650, MR 91h#05052. Zbl0725.05054
- [10] P. Seymour, On multi-colourings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. (3) 38 (1979) 423-460, doi: 10.1112/plms/s3-38.3.423. Zbl0411.05037

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.