New sufficient conditions for hamiltonian and pancyclic graphs
Ingo Schiermeyer; Mariusz Woźniak
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 1, page 29-38
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIngo Schiermeyer, and Mariusz Woźniak. "New sufficient conditions for hamiltonian and pancyclic graphs." Discussiones Mathematicae Graph Theory 27.1 (2007): 29-38. <http://eudml.org/doc/270642>.
@article{IngoSchiermeyer2007,
abstract = {For a graph G of order n we consider the unique partition of its vertex set V(G) = A ∪ B with A = \{v ∈ V(G): d(v) ≥ n/2\} and B = \{v ∈ V(G):d(v) < n/2\}. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.},
author = {Ingo Schiermeyer, Mariusz Woźniak},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {hamiltonian graphs; pancyclic graphs; closure},
language = {eng},
number = {1},
pages = {29-38},
title = {New sufficient conditions for hamiltonian and pancyclic graphs},
url = {http://eudml.org/doc/270642},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Ingo Schiermeyer
AU - Mariusz Woźniak
TI - New sufficient conditions for hamiltonian and pancyclic graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 1
SP - 29
EP - 38
AB - For a graph G of order n we consider the unique partition of its vertex set V(G) = A ∪ B with A = {v ∈ V(G): d(v) ≥ n/2} and B = {v ∈ V(G):d(v) < n/2}. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.
LA - eng
KW - hamiltonian graphs; pancyclic graphs; closure
UR - http://eudml.org/doc/270642
ER -
References
top- [1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Appl. Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.
- [2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5. Zbl0183.52301
- [3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9. Zbl0331.05138
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier North Holland, New York, 1976). Zbl1226.05083
- [5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. Zbl0047.17001
- [6] R.J. Faudree, R.Häggkvist and R.H. Schelp, Pancyclic graphs - connected Ramsey number, Ars Combin. 11 (1981) 37-49. Zbl0485.05038
- [7] E. Flandrin, H. Li, A. Marczyk and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137-143, doi: 10.7151/dmgt.1138. Zbl0989.05064
- [8] G. Jin, Z. Liu and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290. Zbl0788.05059
- [9] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
- [10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5. Zbl0607.05050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.