Fundamental solutions of the complex Monge-Ampère equation

Halil Ibrahim Celik; Evgeny A. Poletsky

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 2, page 103-110
  • ISSN: 0066-2216

Abstract

top
We prove that any positive function on ℂℙ¹ which is constant outside a countable G δ -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.

How to cite

top

Halil Ibrahim Celik, and Evgeny A. Poletsky. "Fundamental solutions of the complex Monge-Ampère equation." Annales Polonici Mathematici 67.2 (1997): 103-110. <http://eudml.org/doc/270695>.

@article{HalilIbrahimCelik1997,
abstract = {We prove that any positive function on ℂℙ¹ which is constant outside a countable $G_δ$-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.},
author = {Halil Ibrahim Celik, Evgeny A. Poletsky},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic functions; singularities; order function; Monge-Ampère equation; Monge-Ampère operator; fundamental solution},
language = {eng},
number = {2},
pages = {103-110},
title = {Fundamental solutions of the complex Monge-Ampère equation},
url = {http://eudml.org/doc/270695},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Halil Ibrahim Celik
AU - Evgeny A. Poletsky
TI - Fundamental solutions of the complex Monge-Ampère equation
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 2
SP - 103
EP - 110
AB - We prove that any positive function on ℂℙ¹ which is constant outside a countable $G_δ$-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
LA - eng
KW - plurisubharmonic functions; singularities; order function; Monge-Ampère equation; Monge-Ampère operator; fundamental solution
UR - http://eudml.org/doc/270695
ER -

References

top
  1. [1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 19-22. Zbl0315.31007
  2. [2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. Zbl0547.32012
  3. [3] U. Cegrell and J. Thorbiörnson, Extremal plurisubharmonic functions, Ann. Polon. Math. 63 (1996), 63-69. Zbl0924.31005
  4. [4] H. I. Celik, Pointwise singularities of plurisubharmonic functions, Ph.D. Thesis, Syracuse University, 1996. 
  5. [5] H. I. Celik and E. A. Poletsky, Order functions of plurisubharmonic functions, Studia Math. 124 (1997), 161-171. Zbl0883.32015
  6. [6] J. P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115-193. Zbl0792.32006
  7. [7] M. Klimek, Pluripotential Theory, Oxford University Press, New York, 1991. 
  8. [8] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. Zbl0811.32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.