The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fundamental solutions of the complex Monge-Ampère equation”

Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applications

Le Mau Hai, Nguyen Xuan Hong (2014)

Annales Polonici Mathematici

Similarity:

The aim of the paper is to investigate subextensions with boundary values of certain plurisubharmonic functions without changing the Monge-Ampère measures. From the results obtained, we deduce that if a given sequence is convergent in C n - 1 -capacity then the sequence of the Monge-Ampère measures of subextensions is weakly*-convergent. As an application, we investigate the Dirichlet problem for a nonnegative measure μ in the class ℱ(Ω,g) without the assumption that μ vanishes on all pluripolar...

On a Monge-Ampère type equation in the Cegrell class χ

Rafał Czyż (2010)

Annales Polonici Mathematici

Similarity:

Let Ω be a bounded hyperconvex domain in ℂn and let μ be a positive and finite measure which vanishes on all pluripolar subsets of Ω. We prove that for every continuous and strictly increasing function χ:(-∞,0) → (-∞,0) there exists a negative plurisubharmonic function u which solves the Monge-Ampère type equation - χ ( u ) ( d d c u ) = d μ . Under some additional assumption the solution u is uniquely determined.

A class of maximal plurisubharmonic functions

Azimbay Sadullaev (2012)

Annales Polonici Mathematici

Similarity:

We consider a class of maximal plurisubharmonic functions and prove several properties of it. We also give a condition of maximality for unbounded plurisubharmonic functions in terms of the Monge-Ampère operator ( d d c e u ) .

The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ

Rafał Czyż (2001)

Annales Polonici Mathematici

Similarity:

We prove some existence results for the complex Monge-Ampère equation ( d d c u ) = g d λ in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.

Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures

S. Hronek, R. Suchánek (2022)

Archivum Mathematicum

Similarity:

We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional T * M . We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional M , and describe the corresponding Hessian structures.

Hölder regularity for solutions to complex Monge-Ampère equations

Mohamad Charabati (2015)

Annales Polonici Mathematici

Similarity:

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1 , 1 and the right hand side has a density in L p ( Ω ) for some p > 1, and prove the Hölder continuity of the solution.

On the Dirichlet problem in the Cegrell classes

Rafał Czyż, Per Åhag (2004)

Annales Polonici Mathematici

Similarity:

Let μ be a non-negative measure with finite mass given by φ ( d d c ψ ) , where ψ is a bounded plurisubharmonic function with zero boundary values and φ L q ( ( d d c ψ ) ) , φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.

Matrix inequalities and the complex Monge-Ampère operator

Jonas Wiklund (2004)

Annales Polonici Mathematici

Similarity:

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.

The Monge problem for strictly convex norms in d

Thierry Champion, Luigi De Pascale (2010)

Journal of the European Mathematical Society

Similarity:

We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.

The complex Monge-Ampère operator in the Cegrell classes

Rafał Czyż

Similarity:

The complex Monge-Ampère operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kähler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampère operator.

A Monge-Ampère equation in conformal geometry

Matthew J. Gursky (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider the Monge-Ampère-type equation det ( A + λ g ) = const . , where A is the Schouten tensor of a conformally related metric and λ > 0 is a suitably chosen constant. When the scalar curvature is non-positive we give necessary and sufficient conditions for the existence of solutions. When the scalar curvature is positive and the first Betti number of the manifold is non-zero we also establish existence. Moreover, by adapting a construction of Schoen, we show that solutions are in general not unique. ...