On critical and cocritical radius edge-invariant graphs
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 3, page 393-418
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topOndrej Vacek. "On critical and cocritical radius edge-invariant graphs." Discussiones Mathematicae Graph Theory 28.3 (2008): 393-418. <http://eudml.org/doc/270696>.
@article{OndrejVacek2008,
abstract = {The concepts of critical and cocritical radius edge-invariant graphs are introduced. We prove that every graph can be embedded as an induced subgraph of a critical or cocritical radius-edge-invariant graph. We show that every cocritical radius-edge-invariant graph of radius r ≥ 15 must have at least 3r+2 vertices.},
author = {Ondrej Vacek},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {extremal graphs; radius of graph; critical radius edge invariant graph; cocritical radius edge invariant graph},
language = {eng},
number = {3},
pages = {393-418},
title = {On critical and cocritical radius edge-invariant graphs},
url = {http://eudml.org/doc/270696},
volume = {28},
year = {2008},
}
TY - JOUR
AU - Ondrej Vacek
TI - On critical and cocritical radius edge-invariant graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 3
SP - 393
EP - 418
AB - The concepts of critical and cocritical radius edge-invariant graphs are introduced. We prove that every graph can be embedded as an induced subgraph of a critical or cocritical radius-edge-invariant graph. We show that every cocritical radius-edge-invariant graph of radius r ≥ 15 must have at least 3r+2 vertices.
LA - eng
KW - extremal graphs; radius of graph; critical radius edge invariant graph; cocritical radius edge invariant graph
UR - http://eudml.org/doc/270696
ER -
References
top- [1] V. Bálint and O. Vacek, Radius-invariant graphs, Math. Bohem. 129 (2004) 361-377. Zbl1080.05505
- [2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, 1990). Zbl0688.05017
- [3] R.D. Dutton, S.R. Medidi and R.C. Brigham, Changing and unchanging of the radius of graph, Linear Algebra Appl. 217 (1995) 67-82, doi: 10.1016/0024-3795(94)00153-5. Zbl0820.05020
- [4] F. Gliviak, On radially extremal graphs and digraphs, a survey, Math. Bohem. 125 (2000) 215-225. Zbl0963.05072
- [5] S.M. Lee, Design of diameter e-invariant networks, Congr. Numer. 65 (1988) 89-102. Zbl0800.05011
- [6] S.M. Lee and A.Y. Wang, On critical and cocritical diameter edge-invariant graphs, Graph Theory, Combinatorics, and Applications 2 (1991) 753-763. Zbl0841.05081
- [7] O. Vacek, Diameter-invariant graphs, Math. Bohem. 130 (2005) 355-370. Zbl1112.05033
- [8] V.G. Vizing, On the number of edges in graph with given radius, Dokl. Akad. Nauk 173 (1967) 1245-1246 (in Russian).
- [9] H.B. Walikar, F. Buckley and K.M. Itagi, Radius-edge-invariant and diameter-edge-invariant graphs, Discrete Math. 272 (2003) 119-126, doi: 10.1016/S0012-365X(03)00189-4. Zbl1029.05044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.